

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	click

Welcome to the Click Documentation

Click is a Python package for creating beautiful command line interfaces
in a composable way with as little code as necessary. It’s the “Command
Line Interface Creation Kit”. It’s highly configurable but comes with
sensible defaults out of the box.

It aims to make the process of writing command line tools quick and fun
while also preventing any frustration caused by the inability to implement
an intended CLI API.

Click in three points:

	arbitrary nesting of commands

	automatic help page generation

	supports lazy loading of subcommands at runtime

What does it look like? Here is an example of a simple click program:

import click

@click.command()
@click.option('--count', default=1, help='Number of greetings.')
@click.option('--name', prompt='Your name',
 help='The person to greet.')
def hello(count, name):
 """Simple program that greets NAME for a total of COUNT times."""
 for x in range(count):
 click.echo('Hello %s!' % name)

if __name__ == '__main__':
 hello()

And what it looks like when run:

$ python hello.py --count=3
Your name: John
Hello John!
Hello John!
Hello John!

It automatically generates nicely formatted help pages:

$ python hello.py --help
Usage: hello.py [OPTIONS]

 Simple program that greets NAME for a total of COUNT times.

Options:
 --count INTEGER Number of greetings.
 --name TEXT The person to greet.
 --help Show this message and exit.

You can get the library directly from PyPI:

pip install click

Documentation Contents

This part of the documentation guides you through all of the library’s
usage patterns.

	Why Click?
	Why not Argparse?

	Why not Docopt etc.?

	Why Hardcoded Behaviors?

	Why No Auto Correction?

	Quickstart
	Screencast and Examples

	Basic Concepts

	Echoing

	Nesting Commands

	Adding Parameters

	Parameters
	Differences

	Parameter Types

	Parameter Names

	Implementing Custom Types

	Options
	Basic Value Options

	Multi Value Options

	Multiple Options

	Counting

	Boolean Flags

	Feature Switches

	Choice Options

	Prompting

	Password Prompts

	Callbacks and Eager Options

	Yes Parameters

	Values from Environment Variables

	Multiple Values from Environment Values

	Other Prefix Characters

	Range Options

	Callbacks for Validation

	Arguments
	Basic Arguments

	Variadic Arguments

	File Arguments

	File Path Arguments

	File Opening Safety

	Environment Variables

	Argument-Like Options

	Commands and Groups
	Callback Invocation

	Nested Handling and Contexts

	Decorating Commands

	Group Invocation Without Command

	Custom Multi Commands

	Merging Multi Commands

	Overriding Defaults

	Context Defaults

	User Input Prompts
	Option Prompts

	Input Prompts

	Confirmation Prompts

	Documenting Scripts
	Help Texts

	Preventing Rewrapping

	Meta Variables

	Command Short Help

	Help Parameter Customization

	Usage with Setuptools
	Introduction

	Testing The Script

	Complex Applications
	Basic Concepts

	Building a Git Clone

	Advanced Patterns
	Command Aliases

	Token Normalization

	Invoking Other Commands

	Callback Evaluation Order

	Testing Click Applications
	Basic Testing

	File System Isolation

	Input Streams

	Utilities
	Printing to Stdout

	ANSI Colors

	Pager Support

	Screen Clearing

	Getting Characters from Terminal

	Waiting for Key Press

	Launching Editors

	Launching Applications

	Printing Filenames

	Standard Streams

	Finding Application Folders

	Showing Progress Bars

	Bash Complete
	Limitations

	What it Completes

	Activation

	Activation Script

	Python 3 Support
	Python 3 Limitations

	Python 2 and 3 Differences

	Python 3 Surrogate Handling

API Reference

If you are looking for information on a specific function, class, or
method, this part of the documentation is for you.

	API
	Decorators

	Utilities

	Commands

	Parameters

	Context

	Types

	Exceptions

	Formatting

	Parsing

	Testing

Miscellaneous Pages

	Click Changelog
	Version 2.4

	Version 2.3

	Version 2.2

	Version 2.1

	Version 2.0

	Version 1.1

	Version 1.0

	Upgrading To Newer Releases
	Upgrading to 2.0

	License
	License Text

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Why Click?

There are so many libraries out there for writing command line utilities;
why does click exist?

This question is easy to answer: because there is not a single command
line utility for Python out there which ticks the following boxes:

	is lazily composable without restrictions

	fully follows the Unix command line conventions

	supports loading values from environment variables out of the box

	supports for prompting of custom values

	is fully nestable and composable

	works the same in Python 2 and 3

	supports file handling out of the box

	comes with useful common helpers (getting terminal dimensions,
ANSI colors, fetching direct keyboard input, screen clearing,
finding config paths, launching apps and editors, etc.)

There are many alternatives to click and you can have a look at them if
you enjoy them better. The obvious ones are optparse and argparse
from the standard library.

Click is actually implemented as a wrapper around a mild fork of
optparse and does not implement any parsing itself. The reason it’s
not based on argparse is that argparse does not allow proper
nesting of commands by design and has some deficiencies when it comes to
POSIX compliant argument handling.

Click is designed to be fun to work with and at the same time not stand in
your way. It’s not overly flexible either. Currently, for instance, it
does not allow you to customize the help pages too much. This is intentional
because click is designed to allow you to nest command line utilities. The
idea is that you can have a system that works together with another system by
tacking two click instances together and they will continue working as they
should.

Too much customizability would break this promise.

Click was written to support the Flask [http://flask.pocoo.org/]
microframework ecosystem because no tool could provide it with the
functionality it needed.

To get an understanding of what click is all about, I strongly recommend
looking at the Complex Applications chapter to see what it’s useful for.

Why not Argparse?

Click is internally based on optparse instead of argparse. This however
is an implementation detail that a user does not have to be concerned
with. The reason however click is not using argparse is that it has some
problematic behaviors that make handling arbitrary command line interfaces
hard:

	argparse has built-in magic behavior to guess if something is an
argument or an option. This becomes a problem when dealing with
incomplete command lines as it’s not possible to know without having a
full understanding of the command line how the parser is going to
behave. This goes against click’s ambitions of dispatching to
subparsers.

	argparse currently does not support disabling of interspearsed
arguments. Without this feature it’s not possible to safely implement
click’s nested parsing nature.

Why not Docopt etc.?

Docopt and many tools like it are cool in how they work, but very few of
these tools deal with nesting of commands and composability in a way like
click. To the best of the developer’s knowledge, click is the first
Python library that aims to create a level of composability of applications
that goes beyond what the system itself supports.

Docopt, for instance, acts by parsing your help pages and then parsing
according to those rules. The side effect of this is that docopt is quite
rigid in how it handles the command line interface. The upside of docopt
is that it gives you strong control over your help page; the downside is
that due to this it cannot rewrap your output for the current terminal
width and it makes translations hard. On top of that docopt is restricted
to basic parsing. It does not handle argument dispatching and callback
invocation or types. This means there is a lot of code that needs to be
written in addition to the basic help page to handle the parsing results.

Most of all, however, it makes composability hard. While docopt does
support dispatching to subcommands, it for instance does not directly
support any kind of automatic subcommand enumeration based on what’s
available or it does not enforce subcommands to work in a consistent way.

This is fine, but it’s different from how click wants to work. Click aims
to support fully composable command line user interfaces by doing the
following:

	Click does not just parse, it also dispatches to the appropriate code.

	Click has a strong concept of an invocation context that allows
subcommands to respond to data from the parent command.

	Click has strong information available for all parameters and commands
so that it can generate unified help pages for the full CLI and to
assist the user in converting the input data as necessary.

	Click has a strong understanding of what types are and can give the user
consistent error messages if something goes wrong. A subcommand
written by a different developer will not suddenly die with a
different error messsage because it’s manually handled.

	Click has enough meta information available for its whole program
that it can evolve over time to improve the user experience without
forcing developers to adjust their programs. For instance, if click
decides to change how help pages are formatted, all click programs
will automatically benefit from this.

The aim of click is to make composable systems, whereas the aim of docopt
is to build the most beautiful and hand-crafted command line interfaces.
These two goals conflict with one another in subtle ways. Click
actively prevents people from implementing certain patterns in order to
achieve unified command line interfaces. You have very little input on
reformatting your help pages for instance.

Why Hardcoded Behaviors?

The other question is why click goes away from optparse and hardcodes
certain behaviors instead of staying configurable. There are multiple
reasons for this. The biggest one is that too much configurability makes
it hard to achieve a consistent command line experience.

The best example for this is optparse’s callback functionality for
accepting arbitrary number of arguments. Due to syntactical ambiguities
on the command line, there is no way to implement fully variadic arguments.
There are always tradeoffs that need to be made and in case of
argparse these tradeoffs have been critical enough, that a system like
click cannot even be implemented on top of it.

In this particular case, click attempts to stay with a handful of accepted
paradigms for building command line interfaces that can be well documented
and tested.

Why No Auto Correction?

The question came up why click does not auto correct parameters given that
even optparse and argparse support automatic expansion of long arguments.
The reason for this is that it’s a liability for backwards compatibility.
If people start relying on automatically modified parameters and someone
adds a new parameter in the future, the script might stop working. These
kinds of problems are hard to find so click does not attempt to be magical
about this.

This sort of behavior however can be implemented on a higher level to
support things such as explicit aliases. For more information see
Command Aliases.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Quickstart

You can get the library directly from PyPI:

pip install click

Screencast and Examples

There is a screencast available which shows the basic API of click and
how to build simple applications with it. It also explores how to build
commands with subcommands.

	Building Command Line Applications with Click [https://www.youtube.com/watch?v=kNke39OZ2k0]

Examples of click applications can be found in the documentation as well
as in the GitHub repository together with readme files:

	inout: File input and output [https://github.com/mitsuhiko/click/tree/master/examples/inout]

	naval: Port of docopt naval example [https://github.com/mitsuhiko/click/tree/master/examples/naval]

	aliases: Command alias example [https://github.com/mitsuhiko/click/tree/master/examples/aliases]

	repo: Git-/Mercurial-like command line interface [https://github.com/mitsuhiko/click/tree/master/examples/repo]

	complex: Complex example with plugin loading [https://github.com/mitsuhiko/click/tree/master/examples/complex]

	validation: Custom parameter validation example [https://github.com/mitsuhiko/click/tree/master/examples/validation]

	colors: Colorama ANSI color support [https://github.com/mitsuhiko/click/tree/master/examples/colors]

	termui: Terminal UI functions demo [https://github.com/mitsuhiko/click/tree/master/examples/termui]

Basic Concepts

Click is based on declaring commands through decorators. Internally, there
is a non-decorator interface for advanced use cases, but it’s discouraged
for high-level usage.

A function becomes a click command line tool by decorating it through
click.command(). At its simplest, just decorating a function
with this decorator will make it into a callable script:

import click

@click.command()
def hello():
 click.echo('Hello World!')

What’s happening is that the decorator converts the function into a
Command which then can be invoked:

if __name__ == '__main__':
 hello()

And what it looks like:

$ python hello.py
Hello World!

And the corresponding help page:

$ python hello.py --help
Usage: hello.py [OPTIONS]

Options:
 --help Show this message and exit.

Echoing

Why does this example use echo() instead of the regular
print() [http://docs.python.org/dev/library/functions.html#print] function? The answer to this question is that click
attempts to support both Python 2 and Python 3 the same way and to be very
robust even when the environment is misconfigured. Click wants to be
functional at least on a basic level even if everything is completely
broken.

What this means is that the echo() function applies some error
correction in case the terminal is misconfigured instead of dying with an
UnicodeError [http://docs.python.org/dev/library/exceptions.html#UnicodeError].

As an added benefit, starting with click 2.0, the echo function also
has good support for ANSI colors. It will automatically strip ANSI codes
if the output stream is a file and if colorama is supported, ANSI colors
will also work on Windows. See ANSI Colors for more information.

If you don’t need this, you can also use the print() construct /
function.

Nesting Commands

Commands can be attached to other commands of type Group. This
allows arbitrary nesting of scripts. As an example here is a script that
implements two commands for managing databases:

@click.group()
def cli():
 pass

@click.command()
def initdb():
 click.echo('Initialized the database')

@click.command()
def dropdb():
 click.echo('Dropped the database')

cli.add_command(initdb)
cli.add_command(dropdb)

As you can see, the group() decorator works like the command()
decorator, but creates a Group object instead which can be given
multiple subcommands that can be attached with Group.add_command().

For simple scripts, it’s also possible to automatically attach and create a
command by using the Group.command() decorator instead. The above
script can instead be written like this:

@click.group()
def cli():
 pass

@cli.command()
def initdb():
 click.echo('Initialized the database')

@cli.command()
def dropdb():
 click.echo('Dropped the database')

Adding Parameters

To add parameters, use the option() and argument() decorators:

@click.command()
@click.option('--count', default=1, help='number of greetings')
@click.argument('name')
def hello(count, name):
 for x in range(count):
 click.echo('Hello %s!' % name)

What it looks like:

$ python hello.py --help
Usage: hello.py [OPTIONS] NAME

Options:
 --count INTEGER number of greetings
 --help Show this message and exit.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Parameters

Click supports two types of parameters for scripts: options and arguments.
There is generally some confusion among authors of command line scripts of
when to use which, so here is a quick overview of the differences. As its
name indicates, an option is optional. While arguments can be optional
within reason, they are much more restricted in how optional they can be.

To help you decide between options and arguments, the recommendation is
to use arguments exclusively for things like going to subcommands or input
filenames / URLs, and have everything else be an option instead.

Differences

Arguments can do less than options. The following features are only
available for options:

	automatic prompting for missing input

	act as flags (boolean or otherwise)

	option values can be pulled from environment variables, arguments can not

	options are fully documented in the help page, arguments are not
(this is intentional as arguments might be too specific to be
automatically documented)

On the other hand arguments unlike options can accept an arbitrary number
of arguments. Options can strictly ever only accept a fixed number of
arguments (defaults to 1).

Parameter Types

Parameters can be of different types. Types can be implemented with
different behavior and some are supported out of the box:

	str / click.STRING:

	The default parameter type which indicates unicode strings.

	int / click.INT:

	A parameter that only accepts integers.

	float / click.FLOAT:

	A parameter that only accepts floating point values.

	bool / click.BOOL:

	A parameter that accepts boolean values. This is automatically used
for boolean flags. If used with string values 1, yes, y
and true convert to True and 0, no, n and false
convert to False.

	click.UUID:

	A parameter that accepts UUID values. This is not automatically
guessed but represented as uuid.UUID [http://docs.python.org/dev/library/uuid.html#uuid.UUID].

	
class click.File(mode='r', encoding=None, errors='strict', lazy=None, atomic=False)

	Declares a parameter to be a file for reading or writing. The file
is automatically closed once the context tears down (after the command
finished working).

Files can be opened for reading or writing. The special value -
indicates stdin or stdout depending on the mode.

By default, the file is opened for reading text data, but it can also be
opened in binary mode or for writing. The encoding parameter can be used
to force a specific encoding.

The lazy flag controls if the file should be opened immediately or
upon first IO. The default is to be non lazy for standard input and
output streams as well as files opened for reading, lazy otherwise.

Starting with click 2.0, files can also be opened atomically in which
case all writes go into a separate file in the same folder and upon
completion the file will be moved over to the original location. This
is useful if a file regularly read by other users is modified.

See File Arguments for more information.

	
class click.Path(exists=False, file_okay=True, dir_okay=True, writable=False, readable=True, resolve_path=False)

	The path type is similar to the File type but it performs
different checks. First of all, instead of returning a open file
handle it returns just the filename. Secondly, it can perform various
basic checks about what the file or directory should be.

	Parameters:	
	exists – if set to true, the file or directory needs to exist for
this value to be valid. If this is not required and a
file does indeed not exist, then all further checks are
silently skipped.

	file_okay – controls if a file is a possible value.

	dir_okay – controls if a directory is a possible value.

	writable – if true, a writable check is performed.

	readable – if true, a readable check is performed.

	resolve_path – if this is true, then the path is fully resolved
before the value is passed onwards. This means
that it’s absolute and symlinks are resolved.

	
class click.Choice(choices)

	The choice type allows a value to checked against a fixed set of
supported values. All of these values have to be integers.

See Choice Options for an example.

	
class click.IntRange(min=None, max=None, clamp=False)

	A parameter that works similar to click.INT but restricts
the value to fit into a range. The default behavior is to fail if the
value falls outside the range, but it can also be silently clamped
between the two edges.

See Range Options for an example.

Custom parameter types can be implemented by subclassing
click.ParamType. For simple cases, passing a Python function that
fails with a ValueError is also supported, though discouraged.

Parameter Names

Parameters (both options and arguments) accept a number of positional
arguments which are the parameter declarations. Each string with a
single dash is added as short argument; each string starting with a double
dash as long one. If a string is added without any dashes, it becomes the
internal parameter name which is also used as variable name.

If a parameter is not given a name without dashes, a name is generated
automatically by taking the longest argument and converting all dashes to
underscores. For an option with ('-f', '--foo-bar'), the parameter
name is foo_bar. For an option with ('-x',), the parameter is x.
For an option with ('-f', '--filename', 'dest'), the parameter is
called dest.

Implementing Custom Types

To implement a custom type, you need to subclass the ParamType
class. Types can be invoked with or without context and parameter object,
which is why they need to be able to deal with this.

The following code implements an integer type that accepts hex and octal
numbers in addition to normal integers, and converts them into regular
integers:

import click

class BasedIntParamType(click.ParamType):
 name = 'integer'

 def convert(self, value, param, ctx):
 try:
 if value[:2].lower() == '0x':
 return int(value[2:], 16)
 elif value[:1] == '0':
 return int(value, 8)
 return int(value, 10)
 except ValueError:
 self.fail('%s is not a valid integer' % value, param, ctx)

BASED_INT = BasedIntParamType()

As you can see, a subclass needs to implement the ParamType.convert()
method and optionally provide the ParamType.name attribute. The
latter can be used for documentation purposes.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Options

Adding options to commands can be accomplished by the option()
decorator. Since options can come in various different versions, there
are a ton of parameters to configure their behavior.

Basic Value Options

The most basic option is a value option. These options accept one
argument which is a value. If no type is provided, the type of the default
value is used. If no default value is provided, the type is assumed to be
STRING. By default, the name of the parameter is the first long
option defined; otherwise the first short one is used.

@click.command()
@click.option('--n', default=1)
def dots(n):
 click.echo('.' * n)

And on the command line:

$ python dots.py --n=2
..

In this case the option is of type INT because the default value
is an integer.

Multi Value Options

Sometimes, you have options that take more than one argument. For options,
only a fixed number of arguments is supported. This can be configured by
the nargs parameter. The values are then stored as a tuple.

@click.command()
@click.option('--pos', nargs=2, type=float)
def findme(pos):
 click.echo('%s / %s' % pos)

And on the command line:

$ python findme.py --pos 2.0 3.0
2.0 / 3.0

Multiple Options

Similarly to nargs, there is also the case of wanting to support a
parameter being provided multiple times to and have all values recorded –
not just the last one. For instance, git commit -m foo -m bar would
record two lines for the commit message: foo and bar. This can be
accomplished with the multiple flag:

Example:

@click.command()
@click.option('--message', '-m', multiple=True)
def commit(message):
 click.echo('\n'.join(message))

And on the command line:

$ python commit.py -m foo -m bar
foo
bar

Counting

In some very rare circumstances, it is interesting to use the repetition
of options to count an integer up. This can be used for verbosity flags,
for instance:

@click.command()
@click.option('-v', '--verbose', count=True)
def log(verbose):
 click.echo('Verbosity: %s' % verbose)

And on the command line:

$ python log.py -vvv
Verbosity: 3

Boolean Flags

Boolean flags are options that can be enabled or disabled. This can be
accomplished by defining two flags in one go separated by a slash (/)
for enabling or disabling the option. (If a slash is in an option string,
click automatically knows that it’s a boolean flag and will pass
is_flag=True implicitly.) Click always wants you to provide an enable
and disable flag so that you can change the default later.

Example:

import os

@click.command()
@click.option('--shout/--no-shout', default=False)
def info(shout):
 rv = os.uname()[0]
 if shout:
 rv = rv.upper() + '!!!!111'
 click.echo(rv)

And on the command line:

$ python info.py --shout
LINUX!!!!111
$ python info.py --no-shout
Linux

If you really don’t want an off-switch, you can just define one and
manually inform click that something is a flag:

import os

@click.command()
@click.option('--shout', is_flag=True)
def info(shout):
 rv = os.uname()[0]
 if shout:
 rv = rv.upper() + '!!!!111'
 click.echo(rv)

And on the command line:

$ python info.py --shout
LINUX!!!!111

Note that if a slash is contained in your option already (for instance, if
you use Windows-style parameters where / is the prefix character), you
can alternatively split the parameters through ; instead:

@click.command()
@click.option('/debug;/no-debug')
def log(debug):
 click.echo('debug=%s' % debug)

if __name__ == '__main__':
 log()

Feature Switches

In addition to boolean flags, there are also feature switches. These are
implemented by setting multiple options to the same parameter name and
defining a flag value. Note that by providing the flag_value parameter,
click will implicitly set is_flag=True.

To set a default flag, assign a value of True to the flag that should be
the default.

import os

@click.command()
@click.option('--upper', 'transformation', flag_value='upper',
 default=True)
@click.option('--lower', 'transformation', flag_value='lower')
def info(transformation):
 click.echo(getattr(os.uname()[0], transformation)())

And on the command line:

$ python info.py --upper
LINUX
$ python info.py --lower
linux
$ python info.py
LINUX

Choice Options

Sometimes, you want to have a parameter be a choice of a list of values.
In that case you can use Choice type. It can be instantiated
with a list of valid values.

Example:

@click.command()
@click.option('--hash-type', type=click.Choice(['md5', 'sha1']))
def digest(hash_type):
 click.echo(hash_type)

What it looks like:

$ python digest.py --hash-type=md5
md5

$ python digest.py --hash-type=foo
Usage: digest.py [OPTIONS]

Error: Invalid value for "--hash-type": invalid choice: foo. (choose from md5, sha1)

$ python digest.py --help
Usage: digest.py [OPTIONS]

Options:
 --hash-type [md5|sha1]
 --help Show this message and exit.

Prompting

In some cases, you want parameters that can be provided from the command line,
but if not provided, ask for user input instead. This can be implemented with
click by defining a prompt string.

Example:

@click.command()
@click.option('--name', prompt=True)
def hello(name):
 click.echo('Hello %s!' % name)

And what it looks like:

$ python hello.py --name=John
Hello John!
$ python hello.py
Name: John
Hello John!

If you are not happy with the default prompt string, you can ask for
a different one:

@click.command()
@click.option('--name', prompt='Your name please')
def hello(name):
 click.echo('Hello %s!' % name)

What it looks like:

$ python hello.py
Your name please: John
Hello John!

Password Prompts

Click also supports hidden prompts and asking for confirmation. This is
useful for password input:

@click.command()
@click.option('--password', prompt=True, hide_input=True,
 confirmation_prompt=True)
def encrypt(password):
 click.echo('Encrypting password to %s' % password.encode('rot13'))

What it looks like:

$ python encrypt.py
Password:
Repeat for confirmation:
Encrypting password to frperg

Because this combination of parameters is quite common, this can also be
replaced with the password_option() decorator:

@click.command()
@click.password_option()
def encrypt(password):
 click.echo('Encrypting password to %s' % password.encode('rot13'))

Callbacks and Eager Options

Sometimes, you want a parameter to completely change the execution flow.
For instance, this is the case when you want to have a --version
parameter that prints out the version and then exits the application.

In such cases, you need two concepts: eager parameters and a callback. An
eager parameter is a parameter that is handled before others, and a
callback is what executes after the parameter is handled. The eagerness
is necessary so that an earlier required parameter does not produce an
error message. For instance, if --version was not eager and a
parameter --foo was required and defined before, you would need to
specify it for --version to work. For more information, see
Callback Evaluation Order.

A callback is a function that is invoked with two parameters: the current
Context and the value. The context provides some useful features
such as quitting the application and gives access to other already
processed parameters.

Here an example for a --version flag:

def print_version(ctx, param, value):
 if not value or ctx.resilient_parsing:
 return
 click.echo('Version 1.0')
 ctx.exit()

@click.command()
@click.option('--version', is_flag=True, callback=print_version,
 expose_value=False, is_eager=True)
def hello():
 click.echo('Hello World!')

The expose_value parameter prevents the pretty pointless version
parameter from being passed to the callback. If that was not specified, a
boolean would be passed to the hello script. The resilient_parsing
flag is applied to the context if click wants to parse the command line
without and destructive behavior that would change the execution flow. In
this case, because we would exit the program, we instead do nothing.

What it looks like:

$ python hello.py
Hello World!
$ python hello.py --version
Version 1.0

Callback Signature Changes

In click 2.0 the signature for callbacks changed. For more
information about these changes see Upgrading to 2.0.

Yes Parameters

For dangerous operations, it’s very useful to be able to ask a user for
confirmation. This can be done by adding a boolean --yes flag and
asking for confirmation if the user did not provide it and to fail in a
callback:

def abort_if_false(ctx, param, value):
 if not value:
 ctx.abort()

@click.command()
@click.option('--yes', is_flag=True, callback=abort_if_false,
 expose_value=False,
 prompt='Are you sure you want to drop the db?')
def dropdb():
 click.echo('Dropped all tables!')

And what it looks like on the command line:

$ python dropdb.py
Are you sure you want to drop the db? [y/N]: n
Aborted!
$ python dropdb.py --yes
Dropped all tables!

Because this combination of parameters is quite common, this can also be
replaced with the confirmation_option() decorator:

@click.command()
@click.confirmation_option(help='Are you sure you want to drop the db?')
def dropdb():
 click.echo('Dropped all tables!')

Callback Signature Changes

In click 2.0 the signature for callbacks changed. For more
information about these changes see Upgrading to 2.0.

Values from Environment Variables

A very useful feature of click is the ability to accept parameters from
environment variables in addition to regular parameters. This allows
tools to be automated much easier. For instance, you might want to pass
a configuration file with a --config parameter but also support exporting
a TOOL_CONFIG=hello.cfg key-value pair for a nicer development
experience.

This is supported by click in two ways. One is to automatically build
environment variables which is supported for options only. To enable this
feature, the auto_envvar_prefix parameter needs to be passed to the
script that is invoked. Each command and parameter is then added as an
uppercase underscore-separated variable. If you have a subcommand
called foo taking an option called bar and the prefix is
MY_TOOL, then the variable is MY_TOOL_FOO_BAR.

Example usage:

@click.command()
@click.option('--username')
def greet(username):
 click.echo('Hello %s!' % username)

if __name__ == '__main__':
 greet(auto_envvar_prefix='GREETER')

And from the command line:

$ export GREETER_USERNAME=john
$ python greet.py
Hello john!

The second option is to manually pull values in from specific environment
variables by defining the name of the environment variable on the option.

Example usage:

@click.command()
@click.option('--username', envvar='USERNAME')
def greet(username):
 click.echo('Hello %s!' % username)

if __name__ == '__main__':
 greet()

And from the command line:

$ export USERNAME=john
$ python greet.py
Hello john!

In that case it can also be a list of different environment variables
where the first one is picked.

Multiple Values from Environment Values

As options can accept multiple values, pulling in such values from
environment variables (which are strings) is a bit more complex. The way
click solves this is by leaving it up to the type to customize this
behavior. For both multiple and nargs with values other than
1, click will invoke the ParamType.split_envvar_value() method to
perform the splitting.

The default implementation for all types is to split on whitespace. The
exceptions to this rule are the File and Path types
which both split according to the operating system’s path splitting rules.
On Unix systems like Linux and OS X, the splitting happens for those on
every colon (:), and for Windows, on every semicolon (;).

Example usage:

@click.command()
@click.option('paths', '--path', envvar='PATHS', multiple=True,
 type=click.Path())
def perform(paths):
 for path in paths:
 click.echo(path)

if __name__ == '__main__':
 perform()

And from the command line:

$ export PATHS=./foo/bar:./test
$ python perform.py
./foo/bar
./test

Other Prefix Characters

Click can deal with alternative prefix characters other than - for
options. This is for instance useful if you want to handle slashes as
parameters / or something similar. Note that this is strongly
discouraged in general because click wants developers to stay close to
POSIX semantics. However in certain situations this can be useful:

@click.command()
@click.option('+w/-w')
def chmod(w):
 click.echo('writable=%s' % w)

if __name__ == '__main__':
 chmod()

And from the command line:

$ python chmod.py +w
writable=True
$ python chmod.py -w
writable=False

Note that if you are using / as prefix character and you want to use a
boolean flag you need to separate it with ; instead of /:

@click.command()
@click.option('/debug;/no-debug')
def log(debug):
 click.echo('debug=%s' % debug)

if __name__ == '__main__':
 log()

Range Options

A special mention should go to the IntRange type, which works very
similarly to the INT type, but restricts the value to fall into a
specific range (inclusive on both edges). It has two modes:

	the default mode (non-clamping mode) where a value that falls outside
of the range will cause an error.

	an optional clamping mode where a value that falls outside of the
range will be clamped. This means that a range of 0-5 would
return 5 for the value 10 or 0 for the value -1 (for
example).

Example:

@click.command()
@click.option('--count', type=click.IntRange(0, 20, clamp=True))
@click.option('--digit', type=click.IntRange(0, 10))
def repeat(count, digit):
 click.echo(str(digit) * count)

if __name__ == '__main__':
 repeat()

And from the command line:

$ python repeat.py --count=1000 --digit=5
55555555555555555555
$ python repeat.py --count=1000 --digit=12
Usage: repeat.py [OPTIONS]

Error: Invalid value for "--digit": 12 is not in the valid range of 0 to 10.

If you pass None for any of the edges, it means that the range is open
at that side.

Callbacks for Validation

Changed in version 2.0.

If you want to apply custom validation logic, you can do this in the
parameter callbacks. These callbacks can both modify values as well as
raise errors if the validation does not work.

In click 1.0, you can only raise the UsageError but starting with
click 2.0, you can also raise the BadParameter error, which has the
added advantage that it will automatically format the error message to
also contain the parameter name.

Example:

def validate_rolls(ctx, param, value):
 try:
 rolls, dice = map(int, value.split('d', 2))
 return (dice, rolls)
 except ValueError:
 raise click.BadParameter('rolls need to be in format NdM')

@click.command()
@click.option('--rolls', callback=validate_rolls, default='1d6')
def roll(rolls):
 click.echo('Rolling a %d-sided dice %d time(s)' % rolls)

if __name__ == '__main__':
 roll()

And what it looks like:

$ python roll.py --rolls=42
Usage: roll.py [OPTIONS]

Error: Invalid value for "--rolls": rolls need to be in format NdM

$ python roll.py --rolls=2d12
Rolling a 12-sided dice 2 time(s)

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Arguments

Arguments work similarly to options but are positional. They also only
support a subset of the features of options due to their syntactical nature.
Click will also not attempt to document arguments for you and wants you to
document them manually in order to avoid ugly help pages.

Basic Arguments

The most basic option is a simple string argument of one value. If no
type is provided, the type of the default value is used, and if no default
value is provided, the type is assumed to be STRING.

Example:

@click.command()
@click.argument('filename')
def touch(filename):
 click.echo(filename)

And what it looks like:

$ python touch.py foo.txt
foo.txt

Variadic Arguments

The second most common version is variadic arguments where a specific (or
unlimited) number of arguments is accepted. This can be controlled with
the nargs parameter. If it is set to -1, then an unlimited number
of arguments is accepted.

The value is then passed as a tuple. Note that only one argument can be
set to nargs=-1, as it will eat up all arguments.

Example:

@click.command()
@click.argument('src', nargs=-1)
@click.argument('dst', nargs=1)
def copy(src, dst):
 for fn in src:
 click.echo('move %s to folder %s' % (fn, dst))

And what it looks like:

$ python copy.py foo.txt bar.txt my_folder
move foo.txt to folder my_folder
move bar.txt to folder my_folder

Note that this is not how you would write this application. The reason
for this is that in this particular example the arguments are defined as
strings. Filenames, however, are not strings! They might be on certain
operating systems, but not necessarily on all. For better ways to write
this, see the next sections.

Note on Non-Empty Variadic Arguments

If you come from argparse, you might be missing support for setting
nargs to + to indicate that at least one argument is required.

This is supported by setting required=True. However, this should
not be used if you can avoid it as we believe scripts should gracefully
degrade into becoming noops if a variadic argument is empty. The
reason for this is that very often, scripts are invoked with wildcard
inputs from the command line and they should not error out if the
wildcard is empty.

File Arguments

Since all the examples have already worked with filenames, it makes sense
to explain how to deal with files properly. Command line tools are more
fun if they work with files the Unix way, which is to accept - as a
special file that refers to stdin/stdout.

Click supports this through the click.File type which
intelligently handles files for you. It also deals with Unicode and bytes
correctly for all versions of Python so your script stays very portable.

Example:

@click.command()
@click.argument('input', type=click.File('rb'))
@click.argument('output', type=click.File('wb'))
def inout(input, output):
 while True:
 chunk = input.read(1024)
 if not chunk:
 break
 output.write(chunk)

And what it does:

$ python inout.py - hello.txt
hello
^D
$ python inout.py hello.txt -
hello

File Path Arguments

In the previous example, the files were opened immediately. But what if
we just want the filename? The naïve way is to use the default string
argument type. However, remember that click is Unicode-based, so the string
will always be a Unicode value. Unfortunately, filenames can be Unicode or
bytes depending on which operating system is being used. As such, the type
is insufficient.

Instead, you should be using the Path type, which automatically
handles this ambiguity. Not only will it return either bytes or Unicode
depending on what makes more sense, but it will also be able to do some
basic checks for you such as existence checks.

Example:

@click.command()
@click.argument('f', type=click.Path(exists=True))
def touch(f):
 click.echo(click.format_filename(f))

And what it does:

$ python touch.py hello.txt
hello.txt

$ python touch.py missing.txt
Usage: touch.py [OPTIONS] F

Error: Invalid value for "f": Path "missing.txt" does not exist.

File Opening Safety

The FileType type has one problem it needs to deal with, and that
is to decide when to open a file. The default behavior is to be
“intelligent” about it. What this means is that it will open stdin/stdout
and files opened for reading immediately. This will give the user direct
feedback when a file cannot be opened, but it will only open files
for writing the first time an IO operation is performed by automatically
wrapping the file in a special wrapper.

This behavior can be forced by passing lazy=True or lazy=False to
the constructor. If the file is opened lazily, it will fail its first IO
operation by raising an FileError.

Since files opened for writing will typically immediately empty the file,
the lazy mode should only be disabled if the developer is absolutely sure
that this is intended behavior.

Forcing lazy mode is also very useful to avoid resource handling
confusion. If a file is opened in lazy mode, it will receive a
close_intelligently method that can help figure out if the file
needs closing or not. This is not needed for parameters, but is
necessary for manually prompting with the prompt() function as you
do not know if a stream like stdout was opened (which was already open
before) or a real file that needs closing.

Starting with click 2.0, it is also possible to open files in atomic mode by
passing atomic=True. In atomic mode, all writes go into a separate
file in the same folder, and upon completion, the file will be moved over to
the original location. This is useful if a file regularly read by other
users is modified.

Environment Variables

Like options, arguments can also grab values from an environment variable.
Unlike options, however, this is only supported for explicitly named
environment variables.

Example usage:

@click.command()
@click.argument('src', envvar='SRC', type=click.File('r'))
def echo(src):
 click.echo(src.read())

And from the command line:

$ export SRC=hello.txt
$ python echo.py
Hello World!

In that case, it can also be a list of different environment variables
where the first one is picked.

Generally, this feature is not recommended because it can cause the user
a lot of confusion.

Argument-Like Options

Sometimes, you want to process arguments that look like options. For
instance, imagine you have a file named -foo.txt. If you pass this as
an argument in this manner, click will treat it as an option.

To solve this, click does what any POSIX style command line script does,
and that is to accept the string -- as a separator for options and
arguments. After the -- marker, all further parameters are accepted as
arguments.

Example usage:

@click.command()
@click.argument('files', nargs=-1, type=click.Path())
def touch(files):
 for filename in files:
 click.echo(filename)

And from the command line:

$ python touch.py -- -foo.txt bar.txt
-foo.txt
bar.txt

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Commands and Groups

The most important feature of click is the concept of arbitrarily nesting
command line utilities. This is implemented through the Command
and Group (actually MultiCommand).

Callback Invocation

For a regular command, the callback is executed whenever the command runs.
If the script is the only command, it will always fire (unless a
parameter callback prevents it). This for instance happens if someone
passes --help to the script).

For groups and multi commands, the situation looks different. In this case,
the callback fires whenever a subcommand fires (unless this behavior is
changed). What this means in practice is that an outer command runs
when an inner command runs:

@click.group()
@click.option('--debug/--no-debug', default=False)
def cli(debug):
 click.echo('Debug mode is %s' % ('on' if debug else 'off'))

@cli.command()
def sync():
 click.echo('Synching')

Here is what this looks like:

$ python tool.py
Usage: tool.py [OPTIONS] COMMAND [ARGS]...

Options:
 --debug / --no-debug
 --help Show this message and exit.

Commands:
 sync

$ python tool.py --debug sync
Debug mode is on
Synching

Nested Handling and Contexts

As you can see from the earlier example, the basic command group accepts a
debug argument which is passed to its callback, but not to the sync
command itself. The sync command only accepts its own arguments.

This allows tools to act completely independent of each other, but how
does one command talk to a nested one? The answer to this is the
Context.

Each time a command is invoked, a new context is created and linked with the
parent context. Normally, you can’t see these contexts, but they are
there. Contexts are passed to parameter callbacks together with the
value automatically. Commands can also ask for the context to be passed
by marking themselves with the pass_context() decorator. In that
case, the context is passed as first argument.

The context can also carry a program specified object that can be
used for the program’s purposes. What this means is that you can build a
script like this:

@click.group()
@click.option('--debug/--no-debug', default=False)
@click.pass_context
def cli(ctx, debug):
 ctx.obj['DEBUG'] = debug

@cli.command()
@click.pass_context
def sync(ctx):
 click.echo('Debug is %s' % (ctx.obj['DEBUG'] and 'on' or 'off'))

if __name__ == '__main__':
 cli(obj={})

If the object is provided, each context will pass the object onwards to
its children, but at any level a context’s object can be overridden. To
reach to a parent, context.parent can be used.

In addition to that, instead of passing an object down, nothing stops the
application from modifying global state. For instance, you could just flip
a global DEBUG variable and be done with it.

Decorating Commands

As you have seen in the earlier example, a decorator can change how a
command is invoked. What actually happens behind the scenes is that
callbacks are always invoked through the Context.invoke() method
which automatically invokes a command correctly (by either passing the
context or not).

This is very useful when you want to write custom decorators. For
instance, a common pattern would be to configure an object representing
state and then storing it on the context and then to use a custom
decorator to find the most recent object of this sort and pass it as first
argument.

For instance, the pass_obj() decorator can be implemented like this:

from functools import update_wrapper

def pass_obj(f):
 @click.pass_context
 def new_func(ctx, *args, **kwargs):
 return ctx.invoke(f, ctx.obj, *args, **kwargs)
 return update_wrapper(new_func, f)

The Context.invoke() command will automatically invoke the function
in the correct way, so the function will either be called with f(ctx,
obj) or f(obj) depending on whether or not it itself is decorated with
with_context().

This is a very powerful context that can be used to build very complex
nested applications; see Complex Applications for more information.

Group Invocation Without Command

By default, a group or multi command is not invoked unless a subcommand is
passed. In fact, not providing a command automatically passes --help
by default. This behavior can be changed by passing
invoke_without_command=True to a group. In that case, the callback is
always invoked instead of showing the help page. The context object also
includes information about whether or not the invocation would go to a
subcommand.

Example:

@click.group(invoke_without_command=True)
@click.pass_context
def cli(ctx):
 if ctx.invoked_subcommand is None:
 click.echo('I was invoked without subcommand')
 else:
 click.echo('I am about to invoke %s' % ctx.invoked_subcommand)

@cli.command()
def sync():
 click.echo('The subcommand')

And how it works in practice:

$ python tool.py
I was invoked without subcommand
$ python tool.py sync
I am about to invoke sync
The subcommand

Custom Multi Commands

In addition to using click.group(), you can also build your own
custom multi commands. This is useful when you want to support commands
being loaded lazily from plugins.

A custom multi command just needs to implement a list and load method:

import click
import os

plugin_folder = os.path.join(os.path.dirname(__file__), 'commands')

class MyCLI(click.MultiCommand):

 def list_commands(self, ctx):
 rv = []
 for filename in os.listdir(plugin_folder):
 if filename.endswith('.py'):
 rv.append(filename[:-3])
 rv.sort()
 return rv

 def get_command(self, ctx, name):
 ns = {}
 fn = os.path.join(plugin_folder, name + '.py')
 with open(fn) as f:
 code = compile(f.read(), fn, 'exec')
 eval(code, ns, ns)
 return ns['cli']

cli = MyCLI(help='This tool\'s subcommands are loaded from a '
 'plugin folder dynamically.')

if __name__ == '__main__':
 cli()

These custom classes can also be used with decorators:

@click.command(cls=MyCLI)
def cli():
 pass

Merging Multi Commands

In addition to implementing custom multi commands, it can also be
interesting to merge multiple together into one script. While this is
generally not as recommended as it nests one below the other, the merging
approach can be useful in some circumstances for a nicer shell experience.

The default implementation for such a merging system is the
CommandCollection class. It accepts a list of other multi
commands and makes the commands available on the same level.

Example usage:

import click

@click.group()
def cli1():
 pass

@cli1.command()
def cmd1():
 """Command on cli1"""

@click.group()
def cli2():
 pass

@cli2.command()
def cmd2():
 """Command on cli2"""

cli = click.CommandCollection(sources=[cli1, cli2])

if __name__ == '__main__':
 cli()

And what it looks like:

$ python cli --help
Usage: cli [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 cmd1 Command on cli1
 cmd2 Command on cli2

In case a command exists in more than one source, the first source wins.

Overriding Defaults

By default, the default value for a parameter is pulled from the
default flag that is provided when it’s defined, but that’s not the
only place defaults can be loaded from. The other place is the
Context.default_map (a dictionary) on the context. This allows
defaults to be loaded from a configuration file to override the regular
defaults.

This is useful if you plug in some commands from another package but
you’re not satisfied with the defaults.

The default map can be nested arbitrarily for each subcommand and
provided when the script is invoked. Alternatively, it can also be
overriden at any point by commands. For instance, a top-level command could
load the defaults from a configuration file.

Example usage:

import click

@click.group()
def cli():
 pass

@cli.command()
@click.option('--port', default=8000)
def runserver(port):
 click.echo('Serving on http://127.0.0.1:%d/' % port)

if __name__ == '__main__':
 cli(default_map={
 'runserver': {
 'port': 5000
 }
 })

And in action:

$ python cli runserver
Serving on http://127.0.0.1:5000/

Context Defaults

New in version 2.0.

Starting with click 2.0 you can override defaults for contexts not just
when calling your script, but also in the decorator that declares a
command. For instance given the previous example which defines a custom
default_map this can also be accomplished in the decorator now.

This example does the same as the previous example:

import click

CONTEXT_SETTINGS = dict(
 default_map={'runserver': {'port': 5000}}
)

@click.group(context_settings=CONTEXT_SETTINGS)
def cli():
 pass

@cli.command()
@click.option('--port', default=8000)
def runserver(port):
 click.echo('Serving on http://127.0.0.1:%d/' % port)

if __name__ == '__main__':
 cli()

And again the example in action:

$ python cli runserver
Serving on http://127.0.0.1:5000/

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

User Input Prompts

Click supports prompts in two different places. The first is automated
prompts when the parameter handling happens, and the second is to ask for
prompts at a later point independently.

This can be accomplished with the prompt() function, which asks for
valid input according to a type, or the confirm() function, which asks
for confirmation (yes/no).

Option Prompts

Option prompts are integrated into the option interface. See
Prompting for more information. Internally, it
automatically calls either prompt() or confirm() as necessary.

Input Prompts

To manually ask for user input, you can use the prompt() function.
By default, it accepts any Unicode string, but you can ask for any other
type. For instance, you can ask for a valid integer:

value = click.prompt('Please enter a valid integer', type=int)

Additionally, the type will be determined automatically if a default value is
provided. For instance, the following will only accept floats:

value = click.prompt('Please enter a number', default=42.0)

Confirmation Prompts

To ask if a user wants to continue with an action, the confirm()
function comes in handy. By default, it returns the result of the prompt
as a boolean value:

if click.confirm('Do you want to continue?'):
 click.echo('Well done!')

There is also the option to make the function automatically abort the
execution of the program if it does not return True:

click.confirm('Do you want to continue?', abort=True)

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Documenting Scripts

Click makes it very easy to document your command line tools. First of
all, it automatically generates help pages for you. While these are
currently not customizable in terms of their layout, all of the text
can be changed.

Help Texts

Commands and options accept help arguments. In the case of commands, the
docstring of the function is automatically used if provided.

Simple example:

@click.command()
@click.option('--count', default=1, help='number of greetings')
@click.argument('name')
def hello(count, name):
 """This script prints hello NAME COUNT times."""
 for x in range(count):
 click.echo('Hello %s!' % name)

And what it looks like:

$ python hello.py --help
Usage: hello.py [OPTIONS] NAME

 This script prints hello NAME COUNT times.

Options:
 --count INTEGER number of greetings
 --help Show this message and exit.

Arguments cannot be documented this way. This is to follow the general
convention of Unix tools of using arguments for only the most necessary
things and to document them in the introduction text by referring to them
by name.

Preventing Rewrapping

The default behavior of click is to rewrap text based on the width of the
terminal. In some circumstances, this can become a problem. The main issue
is when showing code examples, where newlines are significant.

Rewrapping can be disabled on a per-paragraph basis by adding a line with
solely the \b escape marker in it. This line will be removed from the
help text and rewrapping will be disabled.

Example:

@click.command()
def cli():
 """First paragraph.

 This is a very long second paragraph and as you
 can see wrapped very early in the source text
 but will be rewrapped to the terminal width in
 the final output.

 \b
 This is
 a paragraph
 without rewrapping.

 And this is a paragraph
 that will be rewrapped again.
 """

And what it looks like:

$ python cli.py --help
Usage: cli.py [OPTIONS]

 First paragraph.

 This is a very long second paragraph and as you can see wrapped very early
 in the source text but will be rewrapped to the terminal width in the
 final output.

 This is
 a paragraph
 without rewrapping.

 And this is a paragraph that will be rewrapped again.

Options:
 --help Show this message and exit.

Meta Variables

Options and parameters accept a metavar argument that can change the
meta variable in the help page. The default version is the parameter name
in uppercase with underscores, but can be annotated differently if
desired. This can be customized at all levels:

@click.command(options_metavar='<options>')
@click.option('--count', default=1, help='number of greetings',
 metavar='<int>')
@click.argument('name', metavar='<name>')
def hello(count, name):
 """This script prints hello <name> <int> times."""
 for x in range(count):
 click.echo('Hello %s!' % name)

Example:

$ python hello.py --help
Usage: hello.py <options> <name>

 This script prints hello <name> <int> times.

Options:
 --count <int> number of greetings
 --help Show this message and exit.

Command Short Help

For commands, a short help snippet is generated. By default, it’s the first
sentence of the help message of the command, unless it’s too long. This can
also be overridden:

@click.group()
def cli():
 """A simple command line tool."""

@cli.command('init', short_help='init the repo')
def init():
 """Initializes the repository."""

@cli.command('delete', short_help='delete the repo')
def delete():
 """Deletes the repository."""

And what it looks like:

$ python repo.py
Usage: repo.py [OPTIONS] COMMAND [ARGS]...

 A simple command line tool.

Options:
 --help Show this message and exit.

Commands:
 delete delete the repo
 init init the repo

Help Parameter Customization

New in version 2.0.

The help parameter is implemented in click in a very special manner.
Unlike regular parameters it’s automatically added by click for any
command and it performs automatic conflict resolution. By default it’s
called --help, but this can be changed. If a command itself implements
a parameter with the same name, the default help parameter stops accepting
it. There is a context setting that can be used to override the names of
the help parameters called help_option_names.

This example changes the default parameters to -h and --help
instead of just --help:

CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])

@click.command(context_settings=CONTEXT_SETTINGS)
def cli():
 pass

And what it looks like:

$ python cli.py -h
Usage: cli.py [OPTIONS]

Options:
 -h, --help Show this message and exit.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Usage with Setuptools

When writing command line utilities, it’s recommended to write them as
modules that are distributed with setuptools instead of using Unix
shebangs. There are many reasons for this.

The first one is that setuptools automatically generates executable
wrappers for Windows so your command line utilities work on Windows too.

The second reason is that setuptools scripts work with virtualenv on Unix
without the virtualenv having to be activated. This is a very useful
concept which allows you to bundle your scripts with all requirements into
a virtualenv.

Introduction

To bundle your script with setuptools, all you need is the script in a Python
package and a setup.py file.

Imagine this directory structure:

yourpackage/
 cli.py
setup.py

Contents of cli.py:

import click

@click.command()
def cli():
 """Example script."""
 click.echo('Hello World!')

Contents of setup.py:

from setuptools import setup, find_packages

setup(
 name='yourpackage',
 version='0.1',
 packages=find_packages(),
 include_package_data=True,
 install_requires=[
 'Click',
],
 entry_points='''
 [console_scripts]
 yourscript=yourpackage.cli:cli
 ''',
)

The magic is in the entry_points parameter. Below console_scripts,
each line identifies one console script. The first part before the equals
sign (=) is the name of the script that should be generated, the second
part is the import path followed by a colon (:) with the click
command.

That’s it.

Testing The Script

To test the script, you can make a new virtualenv and then install your
package:

$ virtualenv venv
$. venv/bin/activate
$ pip install --editable .

Afterwards, your command should be available:

$ yourscript
Hello World!

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Complex Applications

Click is designed to assist with the creation of complex and simple CLI tools
alike. However, the power of its design is the ability to arbitrarily nest
systems together. For instance, if you have ever used Django, you will
have realized that it provides a command line utility, but so does Celery.
When using Celery with Django, there are two tools that need to interact with
each other and be cross-configured.

In a theoretical world of two separate click command line utilities, they
could solve this problem by nesting one inside the other. For instance, the
web framework could also load the commands for the message queue framework.

Basic Concepts

To understand how this works, you need to understand two concepts: contexts
and the calling convention.

Contexts

Whenever a click command is executed, a Context object is created
which holds state for this particular invocation. It remembers parsed
parameters, what command created it, which resources need to be cleaned up
at the end of the function, and so forth. It can also optionally hold an
application-defined object.

Context objects build a linked list until they hit the top one. Each context
is linked to a parent context. This allows a command to work below
another command and store its own information there without having to be
afraid of altering up the state of the parent command.

Because the parent data is available, however, it is possible to navigate to
it if needed.

Most of the time, you do not see the context object, but when writing more
complex applications it comes in handy. This brings us to the next point.

Calling Convention

When a click command callback is executed, it’s passed all the non-hidden
parameters as keyword arguments. Notably absent is the context. However,
a callback can opt into being passed to the context object by marking itself
with pass_context().

So how do you invoke a command callback if you don’t know if it should
receive the context or not? The answer is that the context itself
provides a helper function (Context.invoke()) which can do this for
you. It accepts the callback as first argument and then invokes the
function correctly.

Building a Git Clone

In this example, we want to build a command line tool that resembles a
version control system. Systems like Git usually provide one
over-arching command that already accepts some parameters and
configuration, and then have extra subcommands that do other things.

The Root Command

At the top level, we need a group that can hold all our commands. In this
case, we use the basic click.group() which allows us to register
other click commands below it.

For this command, we also want to accept some parameters that configure the
state of our tool:

import os
import click

class Repo(object):
 def __init__(self, home=None, debug=False):
 self.home = os.path.abspath(home or '.')
 self.debug = debug

@click.group()
@click.option('--repo-home', envvar='REPO_HOME', default='.repo')
@click.option('--debug/--no-debug', default=False,
 envvar='REPO_DEBUG')
@click.pass_context
def cli(ctx, repo_home, debug):
 ctx.obj = Repo(repo_home, debug)

Let’s understand what this does. We create a group command which can
have subcommands. When it is invoked, it will create an instance of a
Repo class. This holds the state for our command line tool. In this
case, it just remembers some parameters, but at this point it could also
start loading configuration files and so on.

This state object is then remembered by the context as obj.
This is a special attribute where commands are supposed to remember what
they need to pass on to their children.

In order for this to work, we need to mark our function with
pass_context(), because otherwise, the context object would be
entirely hidden from us.

The First Child Command

Let’s add our first child command to it, the clone command:

@cli.command()
@click.argument('src')
@click.argument('dest', required=False)
def clone(src, dest):
 pass

So now we have a clone command, but how do we get access to the repo? As
you can imagine, one way is to use the pass_context() function which
again will make our callback also get the context passed on which we
memorized the repo. However, there is a second version of this decorator
called pass_obj() which will just pass the stored object, (in our case
the repo):

@cli.command()
@click.argument('src')
@click.argument('dest', required=False)
@click.pass_obj
def clone(repo, src, dest):
 pass

Interleaved Commands

While not relevant for the particular program we want to build, there is
also quite good support for interleaving systems. Imagine for instance that
there was a super cool plugin for our version control system that needed a
lot of configuration and wanted to store its own configuration as
obj. If we would then attach another command below that,
we would all of a sudden get the plugin configuration instead of our repo
object.

One obvious way to remedy this is to store a reference to the repo in the
plugin, but then a command needs to be aware that it’s attached below such a
plugin.

There is a much better system that can built by taking advantage of the linked
nature of contexts. We know that the plugin context is linked to the context
that created our repo. Because of that, we can start a search for the last
level where the object stored by the context was a repo.

Built-in support for this is provided by the make_pass_decorator()
factory, which will create decorators for us that find objects (it
internally calls into Context.find_object()). In our case, we
know that we want to find the closest Repo object, so let’s make a
decorator for this:

pass_repo = click.make_pass_decorator(Repo)

If we now use pass_repo instead of pass_obj, we will always get a
repo instead of something else:

@cli.command()
@click.argument('src')
@click.argument('dest', required=False)
@pass_repo
def clone(repo, src, dest):
 pass

Ensuring Object Creation

The above example only works if there was an outer command that created a
Repo object and stored it in the context. For some more advanced use
cases, this might become a problem. The default behavior of
make_pass_decorator() is to call Context.find_object()
which will find the object. If it can’t find the object, it will raise an
error. The alternative behavior is to use Context.ensure_object()
which will find the object, and if it cannot find it, will create one and
store it in the innermost context. This behavior can also be enabled for
make_pass_decorator() by passing ensure=True:

pass_repo = click.make_pass_decorator(Repo, ensure=True)

In this case, the innermost context gets an object created if it is
missing. This might replace objects being placed there earlier. In this
case, the command stays executable, even if the outer command does not run.
For this to work, the object type needs to have a constructor that accepts
no arguments.

As such it runs standalone:

@click.command()
@pass_repo
def cp(repo):
 click.echo(repo)

As you can see:

$ python cp.py
<Repo object at 0x7f67d60bacd0>

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Advanced Patterns

In addition to common functionality that is implemented in the library
itself, there are countless patterns that can be implemented by extending
click. This page should give some insight into what can be accomplished.

Command Aliases

Many tools support aliases for commands. For instance, you can configure
git to accept git ci as alias for git commit. Other tools
also support auto-discovery for aliases by automatically shortening them.

Click does not support this out of the box, but it’s very easy to customize
the Group or any other MultiCommand to provide this
functionality.

As explained in Custom Multi Commands, a multi command can provide
two methods: list_commands() and
get_command(). In this particular case, you only need
to override the latter as you generally don’t want to enumerate the
aliases on the help page in order to avoid confusion.

This following example implements a subclass of Group that
accepts a prefix for a command. If there were a command called push,
it would accept pus as an alias (so long as it was unique):

class AliasedGroup(click.Group):

 def get_command(self, ctx, cmd_name):
 rv = click.Group.get_command(self, ctx, cmd_name)
 if rv is not None:
 return rv
 matches = [x for x in self.list_commands(ctx)
 if x.startswith(cmd_name)]
 if not matches:
 return None
 elif len(matches) == 1:
 return click.Group.get_command(self, ctx, matches[0])
 ctx.fail('Too many matches: %s' % ', '.join(sorted(matches)))

And it can then be used like this:

@click.command(cls=AliasedGroup)
def cli():
 pass

@cli.command()
def push():
 pass

@cli.command()
def pop():
 pass

Token Normalization

New in version 2.0.

Starting with click 2.0, it’s possible to provide a function that is used
for normalizing tokens. Tokens are option names, choice values, or command
values. This can be used to implement case insensitive options, for
instance.

In order to use this feature, the context needs to be passed a function that
performs the normalization of the token. For instance, you could have a
function that converts the token to lowercase:

CONTEXT_SETTINGS = dict(token_normalize_func=lambda x: x.lower())

@click.command(context_settings=CONTEXT_SETTINGS)
@click.option('--name', default='Pete')
def cli(name):
 click.echo('Name: %s' % name)

And how it works on the command line:

$ python cli --NAME=Pete
Name: Pete

Invoking Other Commands

Sometimes, it might be interesting to invoke one command from another
command. This is a pattern that is generally discouraged with click, but
possible nonetheless. For this, you can use the Context.invoke()
or Context.forward() methods.

They work similarly, but the difference is that Context.invoke() merely
invokes another command with the arguments you provide as a caller,
whereas Context.forward() fills in the arguments from the current
command. Both accept the command as the first argument and everything else
is passed onwards as you would expect.

Example:

cli = click.Group()

@cli.command()
@click.option('--count', default=1)
def test(count):
 click.echo('Count: %d' % count)

@cli.command()
@click.option('--count', default=1)
@click.pass_context
def dist(ctx, count):
 ctx.forward(test)
 ctx.invoke(test, count=42)

And what it looks like:

$ python cli dist
Count: 1
Count: 42

Callback Evaluation Order

Click works a bit differently than some other command line parsers in that
it attempts to reconcile the order of arguments as defined by the
programmer with the order of arguments as defined by the user before
invoking any callbacks.

This is an important concept to understand when porting complex
patterns to click from optparse or other systems. A parameter
callback invocation in optparse happens as part of the parsing step,
whereas a callback invocation in click happens after the parsing.

The main difference is that in optparse, callbacks are invoked with the raw
value as it happens, whereas a callback in click is invoked after the
value has been fully converted.

Generally, the order of invocation is driven by the order in which the user
provides the arguments to the script; if there is an option called --foo
and an option called --bar and the user calls it as --bar
--foo, then the callback for bar will fire before the one for foo.

There are two exceptions to this rule which are important to know:

	Eagerness:

	An option can be set to be “eager”. All eager parameters are
evaluated before all non-eager parameters, but again in the order as
they were provided on the command line by the user.

This is important for parameters that execute and exit like --help
and --version. Both are eager parameters, but whatever parameter
comes first on the command line will win and exit the program.

	Repeated parameters:

	If an option or argument is split up on the command line into multiple
places because it is repeated – for instance, --exclude foo --include
baz --exclude bar – the callback will fire based on the position of
the first option. In this case, the callback will fire for
exclude and it will be passed both options (foo and
bar), then the callback for include will fire with baz
only.

Note that even if a parameter does not allow multiple versions, click
will still accept the position of the first, but it will ignore every
value except the first. The reason for this is to allow composability
through shell aliases that set defaults.

	Missing parameters:

	If a parameter is not defined on the command line, the callback will
still fire. This is different from how it works in optparse where
undefined values do not fire the callback. Missing parameters fire
their callbacks at the very end which makes it possible for them to
default to values from a parameter that came before.

Most of the time you do not need to be concerned about any of this,
but it is important to know how it works for some advanced cases.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Testing Click Applications

For basic testing, click provides the click.testing module which
provides test functionality that helps you invoke command line
applications and check their behavior.

These tools should really only be used for testing as they change
the entire interpreter state for simplicity and are not in any way
thread-safe!

Basic Testing

The basic functionality for testing click applications is the
CliRunner which can invoke commands as command line scripts. The
CliRunner.invoke() method runs the command line script in isolation
and captures the output as both bytes and binary data.

The return value is a Result object, which has the captured output
data, exit code, and optional exception attached.

Example:

import click
from click.testing import CliRunner

def test_hello_world():
 @click.command()
 @click.argument('name')
 def hello(name):
 click.echo('Hello %s!' % name)

 runner = CliRunner()
 result = runner.invoke(hello, ['Peter'])
 assert result.exit_code == 0
 assert result.output == 'Hello Peter!\n'

File System Isolation

For basic command line tools that want to operate with the file system, the
CliRunner.isolated_filesystem() method comes in useful which sets up
an empty folder and changes the current working directory to.

Example:

import click
from click.testing import CliRunner

def test_cat():
 @click.command()
 @click.argument('f', type=click.File())
 def cat(f):
 click.echo(f.read())

 runner = CliRunner()
 with runner.isolated_filesystem():
 with open('hello.txt') as f:
 f.write('Hello World!')

 result = runner.invoke(cat, ['hello.txt'])
 assert result.exit_code == 0
 assert result.output == 'Hello World!\n'

Input Streams

The test wrapper can also be used to provide input data for the input
stream (stdin). This is very useful for testing prompts, for instance:

import click
from click.testing import CliRunner

def test_prompts():
 @click.command()
 @click.option('--foo', prompt=True)
 def test(foo):
 click.echo('foo=%s' % foo)

 runner = CliRunner()
 result = runner.invoke(test, input='wau wau\n')
 assert not result.exception
 assert result.output == 'Foo: wau wau\nfoo=wau wau\n'

Note that prompts will be emulated so that they write the input data to
the output stream as well. If hidden input is expected then this
obviously does not happen.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Utilities

Besides the functionality that click provides to interface with argument
parsing and handling, it also provides a bunch of addon functionality that
is useful for writing command line utilities.

Printing to Stdout

The most obvious helper is the echo() function, which in many ways
works like the Python print statement or function. The main difference is
that it works the same in Python 2 and 3, it intelligently detects
misconfigured output streams, and it will never fail (except in Python 3; for
more information see Python 3 Limitations).

Example:

import click

click.echo('Hello World!')

Most importantly, it can print both Unicode and binary data, unlike the
built-in print function in Python 3, which cannot output any bytes. It
will, however, emit a trailing newline by default, which needs to be
suppressed by passing nl=False:

click.echo(b'\xe2\x98\x83', nl=False)

ANSI Colors

New in version 2.0.

Starting with click 2.0, the echo() function gained extra
functionality to deal with ANSI colors and styles. Note that on Windows,
this functionality is only available if colorama [https://pypi.python.org/pypi/colorama] is installed. If it
is installed, then ANSI codes are intelligently handled.

Primarily this means that:

	click’s echo() function will automatically strip ANSI color codes
if the stream is not connected to a terminal.

	the echo() function will transparently connect to the terminal on
Windows and translate ANSI codes to terminal API calls. This means
that colors will work on Windows the same way they do on other
operating systems.

Note for colorama support: click will automatically detect when colorama
is available and use it. Do not call colorama.init()!

To install colorama, run this command:

$ pip install colorama

For styling a string, the style() function can be used:

import click

click.echo(click.style('Hello World!', fg='green'))
click.echo(click.style('Some more text', bg='blue', fg='white'))
click.echo(click.style('ATTENTION', blink=True, bold=True))

The combination of echo() and style() is also available in
a single function called secho():

click.secho('Hello World!', fg='green')
click.secho('Some more text', bg='blue', fg='white')
click.secho('ATTENTION', blink=True, bold=True)

Pager Support

In some situations, you might want to show long texts on the terminal and
let a user scroll through it. This can be achieved by using the
echo_via_pager() function which works similarly to the echo()
function, but always writes to stdout and, if possible, through a pager.

Example:

@click.command()
def less():
 click.echo_via_pager('\n'.join('Line %d' % idx
 for idx in range(200)))

Screen Clearing

New in version 2.0.

To clear the terminal screen, you can use the clear() function that
is provided starting with click 2.0. It does what the name suggests: it
clears the entire visible screen in a platform-agnostic way:

import click
click.clear()

Getting Characters from Terminal

New in version 2.0.

Normally, when reading input from the terminal, you would read from
standard input. However, this is buffered input and will not show up until
the line has been terminated. In certain circumstances, you might not want
to do that and instead read individual characters as they are being written.

For this, click provides the getchar() function which reads a single
character from the terminal buffer and returns it as a Unicode character.

Note that this function will always read from the terminal, even if stdin
is instead a pipe.

Example:

import click

click.echo('Continue? [yn] ', nl=False)
c = click.getchar()
click.echo()
if c == 'y':
 click.echo('We will go on')
elif c == 'n':
 click.echo('Abort!')
else:
 click.echo('Invalid input :(')

Note that this reads raw input, which means that things like arrow keys
will show up in the platform’s native escape format. The only characters
translated are ^C and ^D which are converted into keyboard
interrupts and end of file exceptions respectively. This is done because
otherwise, it’s too easy to forget about that and to create scripts that
cannot be properly exited.

Waiting for Key Press

New in version 2.0.

Sometimes, it’s useful to pause until the user presses any key on the
keyboard. This is especially useful on Windows where cmd.exe will
close the window at the end of the command execution by default, instead
of waiting.

In click, this can be accomplished with the pause() function. This
function will print a quick message to the terminal (which can be
customized) and wait for the user to press a key. In addition to that,
it will also become a NOP (no operation instruction) if the script is not
run interactively.

Example:

import click
click.pause()

Launching Editors

New in version 2.0.

Click supports launching editors automatically through edit(). This
is very useful for asking users for multi-line input. It will
automatically open the user’s defined editor or fall back to a sensible
default. If the user closes the editor without saving, the return value
will be None otherwise the entered text.

Example usage:

import click

def get_commit_message():
 MARKER = '# Everything below is ignored\n'
 message = click.edit('\n\n' + MARKER)
 if message is not None:
 return message.split(MARKER, 1)[0].rstrip('\n')

Alternatively, the function can also be used to launch editors for files by
a specific filename. In this case, the return value is always None.

Example usage:

import click
click.edit(filename='/etc/passwd')

Launching Applications

New in version 2.0.

Click supports launching applications through launch(). This can be
used to open the default application assocated with a URL or filetype.
This can be used to launch web browsers or picture viewers, for instance.
In addition to this, it can also launch the file manager and automatically
select the provided file.

Example usage:

click.launch('http://click.pocoo.org/')
click.launch('/my/downloaded/file.txt', locate=True)

Printing Filenames

Because filenames might not be Unicode, formatting them can be a bit
tricky. Generally, this is easier in Python 2 than on 3, as you can just
write the bytes to stdout with the print function, but in Python 3, you
will always need to operate in Unicode.

The way this works with click is through the format_filename()
function. It does a best-effort conversion of the filename to Unicode and
will never fail. This makes it possible to use these filenames in the
context of a full Unicode string.

Example:

click.echo('Path: %s' % click.format_filename(b'foo.txt'))

Standard Streams

For command line utilities, it’s very important to get access to input and
output streams reliably. Python generally provides access to these
streams through sys.stdout and friends, but unfortunately, there are
API differences between 2.x and 3.x, especially with regards to how these
streams respond to Unicode and binary data.

Because of this, click provides the get_binary_stream() and
get_text_stream() functions, which produce consistent results with
different Python versions and for a wide variety pf terminal configurations.

The end result is that these functions will always return a functional
stream object (except in very odd cases in Python 3; see
Python 3 Limitations).

Example:

import click

stdin_text = click.get_text_stream('stdin')
stdout_binary = click.get_binary_stream('stdout')

Finding Application Folders

New in version 2.0.

Very often, you want to open a configuration file that belongs to your
application. However, different operating systems store these configuration
files in different locations depending on their standards. Click provides
a get_app_dir() function which returns the most appropriate location
for per-user config files for your application depending on the OS.

Example usage:

import os
import click
import ConfigParser

APP_NAME = 'My Application'

def read_config():
 cfg = os.path.join(click.get_app_dir(APP_NAME), 'config.ini')
 parser = ConfigParser.RawConfigParser()
 parser.read([cfg])
 rv = {}
 for section in parser.sections():
 for key, value in parser.items(section):
 rv['%s.%s' % (section, key)] = value
 return rv

Showing Progress Bars

New in version 2.0.

Sometimes, you have command line scripts that need to process a lot of data,
but you want to quickly show the user some progress about how long that
will take. Click supports simple progress bar rendering for that through
the progressbar() function.

The basic usage is very simple: the idea is that you have an iterable that
you want to operate on. For each item in the iterable it might take some
time to do processing. So say you have a loop like this:

for user in all_the_users_to_process:
 modify_the_user(user)

To hook this up with an automatically updating progress bar, all you need
to do is to change the code to this:

import click

with click.progressbar(all_the_users_to_process) as bar:
 for user in bar:
 modify_the_user(user)

Click will then automatically print a progress bar to the terminal and
calculate the remaining time for you. The calculation of remaining time
requires that the iterable has a length. If it does not have a length
but you know the length, you can explicitly provide it:

with click.progressbar(all_the_users_to_process,
 length=number_of_users) as bar:
 for user in bar:
 modify_the_user(user)

Another useful feature is to associate a label with the progress bar which
will be shown preceding the progress bar:

with click.progressbar(all_the_users_to_process,
 label='Modifying user accounts',
 length=number_of_users) as bar:
 for user in bar:
 modify_the_user(user)

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Bash Complete

New in version 2.0.

As of click 2.0, there is built-in support for Bash completion for
any click script. There are certain restrictions on when this completion
is available, but for the most part it should just work.

Limitations

Bash completion is only available if a script has been installed properly,
and not executed through the python command. For information about
how to do that, see Usage with Setuptools. Also, click currently
only supports completion for Bash.

Currently, Bash completion is an internal feature that is not customizable.
This might be relaxed in future versions.

What it Completes

Generally, the Bash completion support will complete subcommands and
parameters. Subcommands are always listed whereas parameters only if at
least a dash has been provided. Example:

$ repo <TAB><TAB>
clone commit copy delete setuser
$ repo clone -<TAB><TAB>
--deep --help --rev --shallow -r

Activation

In order to activate Bash completion, you need to inform Bash that
completion is available for your script, and how. Any click application
automatically provides support for that. The general way this works is
through a magic environment variable called _<PROG_NAME>_COMPLETE,
where <PROG_NAME> is your application executable name in uppercase
with dashes replaced by underscores.

If your tool is called foo-bar, then the magic variable is called
_FOO_BAR_COMPLETE. By exporting it with the source value it will
spit out the activation script which can be trivally activated.

For instance, to enable Bash completion for your foo-bar script, this
is what you would need to put into your .bashrc:

eval "$(_FOO_BAR_COMPLETE=source foo-bar)"

From this point onwards, your script will have Bash completion enabled.

Activation Script

The above activation example will always invoke your application on
startup. This might be slowing down the shell activation time
significantly if you have many applications. Alternatively, you could also
ship a file with the contents of that, which is what Git and other systems
are doing.

This can be easily accomplished:

_FOO_BAR_COMPLETE=source foo-bar > foo-bar-complete.sh

And then you would put this into your bashrc instead:

. /path/to/foo-bar-complete.sh

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Python 3 Support

Click supports Python 3, but like all other command line utility libraries,
it suffers from the Unicode text model in Python 3. All examples in the
documentation were written so that they could run on both Python 2.x and
Python 3.3 or higher.

At the moment, it is strongly recommended is to use Python 2 for click
utilities unless Python 3 is a hard requirement.

Python 3 Limitations

At the moment, click suffers from a few problems with Python 3:

	The command line in Unix traditionally is in bytes, and not Unicode.
While there are encoding hints for all of this, there are generally
some situations where this can break. The most common one is SSH
connections to machines with different locales.

Misconfigured environments can currently cause a wide range of Unicode
problems in Python 3 due to the lack of support for roundtripping
surrogate escapes. This will not be fixed in click itself!

For more information see Python 3 Surrogate Handling.

	Standard input and output in Python 3 is opened in Unicode mode by
default. Click has to reopen the stream in binary mode in certain
situations. Because there is no standardized way to do this, this
might not always work. Primarily this can become a problem when
testing command-line applications.

This is not supported:

sys.stdin = io.StringIO('Input here')
sys.stdout = io.StringIO()

Instead you need to do this:

input = 'Input here'
in_stream = io.BytesIO(input.encode('utf-8'))
sys.stdin = io.TextIOWrapper(in_stream, encoding='utf-8')
out_stream = io.BytesIO()
sys.stdout = io.TextIOWrapper(out_stream, encoding='utf-8')

Remember that in that case, you need to use out_stream.getvalue()
and not sys.stdout.getvalue() if you want to access the buffer
contents as the wrapper will not forward that method.

Python 2 and 3 Differences

Click attempts to minimize the differences between Python 2 and Python 3
by following the best practices for both languages.

In Python 2, the following is true:

	sys.stdin, sys.stdout, and sys.stderr are opened in binary
mode, but under some circumstances they support Unicode output. Click
attempts to not subvert this but provides support for forcing streams
to be Unicode-based.

	sys.argv is always byte-based. Click will pass bytes to all
input types and convert as necessary. The STRING type
automatically will decode properly the input value into a string by
trying the most appropriate encodings.

	When dealing with files, click will never go through the Unicode APIs
and will instead use the operating system’s byte APIs to open the
files.

In Python 3, the following is true:

	sys.stdin, sys.stdout and sys.stderr are by default
text-based. When click needs a binary stream, it attempts to discover
the underlying binary stream. See Python 3 Limitations for how
this works.

	sys.argv is always Unicode-based. This also means that the native
type for input values to the types in click is Unicode, and not bytes.

This causes problems when the terminal is incorrectly set and Python
does not figure out the encoding. In that case, the Unicode string
will contain error bytes encoded as surrogate escapes.

	When dealing with files, click will always use the Unicode file system
API calls by using the operating system’s reported or guessed
filesystem encoding. Surrogates are supported for filenames, so it
should be possible to open files through the File type even
if the environment is misconfigured.

Python 3 Surrogate Handling

Click in Python 3 does all the Unicode handling in the standard library
and is subject to its behavior. In Python 2, click does all the Unicode
handling itself, which means there are differences in error behavior.

The most glaring difference is that in Python 2, Unicode will “just work”,
while in Python 3, it requires extra care. The reason for this is that on
Python 3, the encoding detection is done in the interpreter and on Linux
and certain other operating systems its encoding handling is problematic.

The biggest source of frustration is that click scripts invoked by
init systems (sysvinit, upstart, systemd, etc.), deployment tools (salt,
puppet), or cron jobs (cron) will refuse to work unless a Unicode locale is
exported.

If click encounters such an environment it will prevent further execution
to force you to set a locale. This is done because click cannot know
about the state of the system once it’s invoked and restore the values
before Python’s Unicode handling kicked in.

If you see something like this error in Python 3:

Traceback (most recent call last):
 ...
RuntimeError: Click will abort further execution because Python 3 was
 configured to use ASCII as encoding for the environment. Either switch
 to Python 2 or consult for http://click.pocoo.org/python3/
 mitigation steps.

You are dealing with an environment where Python 3 thinks you are
restricted to ASCII data. The solution to these problems is different
depending on which locale your computer is running in.

For instance, if you have a German Linux machine, you can fix the problem
by exporting the locale to de_DE.utf-8:

export LC_ALL=de_DE.utf-8
export LANG=de_DE.utf-8

If you are on a US machine, en_EN.utf-8 is the encoding of choice. On
some newer Linux systems, you could also try C.UTF-8 as the locale:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

You need to do this before you invoke your Python script. If you are
curious about the reasons for this, you can join the discussions in the
Python 3 bug tracker:

	ASCII is a bad filesystem default encoding [http://bugs.python.org/issue13643#msg149941]

	Use surrogateescape as default error handler [http://bugs.python.org/issue19977]

	Python 3 raises Unicode errors in the C locale [http://bugs.python.org/issue19846]

	LC_CTYPE=C: pydoc leaves terminal in an unusable state [http://bugs.python.org/issue21398] (this is relevant to click
because the pager support is provided by the stdlib pydoc module)

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

API

This part of the documentation lists the full API reference of all public
classes and functions.

Decorators

	
click.command(name=None, cls=None, **attrs)

	Creates a new Command and uses the decorated function as
callback. This will also automatically attach all decorated
option()s and argument()s as parameters to the command.

The name of the command defaults to the name of the function. If you
want to change that, you can pass the intended name as the first
argument.

All keyword arguments are forwarded to the underlying command class.

Once decorated the function turns into a Command instance
that can be invoked as a command line utility or be attached to a
command Group.

	Parameters:	
	name – the name of the command. This defaults to the function
name.

	cls – the command class to instantiate. This defaults to
Command.

	
click.group(name=None, **attrs)

	Creates a new Group with a function as callback. This
works otherwise the same as command() just that the cls
parameter is set to Group.

	
click.argument(*param_decls, **attrs)

	Attaches an option to the command. All positional arguments are
passed as parameter declarations to Argument; all keyword
arguments are forwarded unchanged. This is equivalent to creating an
Option instance manually and attaching it to the
Command.params list.

	
click.option(*param_decls, **attrs)

	Attaches an option to the command. All positional arguments are
passed as parameter declarations to Option; all keyword
arguments are forwarded unchanged. This is equivalent to creating an
Option instance manually and attaching it to the
Command.params list.

	
click.password_option(*param_decls, **attrs)

	Shortcut for password prompts.

This is equivalent to decorating a function with option() with
the following parameters:

@click.command()
@click.option('--password', prompt=True, confirmation_prompt=True,
 hide_input=True)
def changeadmin(password):
 pass

	
click.confirmation_option(*param_decls, **attrs)

	Shortcut for confirmation prompts that can be ignored by passing
--yes as parameter.

This is equivalent to decorating a function with option() with
the following parameters:

def callback(ctx, param, value):
 if not value:
 ctx.abort()

@click.command()
@click.option('--yes', is_flag=True, callback=callback,
 expose_value=False, prompt='Do you want to continue?')
def dropdb():
 pass

	
click.version_option(version=None, *param_decls, **attrs)

	Adds a --version option which immediately ends the program
printing out the version number. This is implemented as an eager
option that prints the version and exits the program in the callback.

	Parameters:	
	version – the version number to show. If not provided click
attempts an auto discovery via setuptools.

	prog_name – the name of the program (defaults to autodetection)

	message – custom message to show instead of the default
('%(prog)s, version %(version)s')

	others – everything else is forwarded to option().

	
click.help_option(*param_decls, **attrs)

	Adds a --help option which immediately ends the program
printing out the help page. This is usually unnecessary to add as
this is added by default to all commands unless suppressed.

Like version_option(), this is implemented as eager option that
prints in the callback and exits.

All arguments are forwarded to option().

	
click.pass_context(f)

	Marks a callback as wanting to receive the current context
object as first argument.

	
click.pass_obj(f)

	Similar to pass_context(), but only pass the object on the
context onwards (Context.obj). This is useful if that object
represents the state of a nested system.

	
click.make_pass_decorator(object_type, ensure=False)

	Given an object type this creates a decorator that will work
similar to pass_obj() but instead of passing the object of the
current context, it will find the innermost context of type
object_type().

This generates a decorator that works roughly like this:

from functools import update_wrapper

def decorator(f):
 @pass_context
 def new_func(ctx, *args, **kwargs):
 obj = ctx.find_object(object_type)
 return ctx.invoke(f, obj, *args, **kwargs)
 return update_wrapper(new_func, f)
return decorator

	Parameters:	
	object_type – the type of the object to pass.

	ensure – if set to True, a new object will be created and
remembered on the context if it’s not there yet.

Utilities

	
click.echo(message=None, file=None, nl=True)

	Prints a message plus a newline to the given file or stdout. On
first sight, this looks like the print function, but it has improved
support for handling Unicode and binary data that does not fail no
matter how badly configured the system is.

Primarily it means that you can print binary data as well as Unicode
data on both 2.x and 3.x to the given file in the most appropriate way
possible. This is a very carefree function as in that it will try its
best to not fail.

In addition to that, if colorama [http://pypi.python.org/pypi/colorama] is installed, the echo function will
also support clever handling of ANSI codes. Essentially it will then
do the following:

	add transparent handling of ANSI color codes on Windows.

	hide ANSI codes automatically if the destination file is not a
terminal.

Changed in version 2.0: Starting with version 2.0 of click, the echo function will work
with colorama if it’s installed.

	Parameters:	
	message – the message to print

	file – the file to write to (defaults to stdout)

	nl – if set to True (the default) a newline is printed afterwards.

	
click.echo_via_pager(text)

	This function takes a text and shows it via an environment specific
pager on stdout.

	Parameters:	text – the text to page.

	
click.prompt(text, default=None, hide_input=False, confirmation_prompt=False, type=None, value_proc=None, prompt_suffix=': ', show_default=True)

	Prompts a user for input. This is a convenience function that can
be used to prompt a user for input later.

If the user aborts the input by sending a interrupt signal, this
function will catch it and raise a Abort exception.

	Parameters:	
	text – the text to show for the prompt.

	default – the default value to use if no input happens. If this
is not given it will prompt until it’s aborted.

	hide_input – if this is set to true then the input value will
be hidden.

	confirmation_prompt – asks for confirmation for the value.

	type – the type to use to check the value against.

	value_proc – if this parameter is provided it’s a function that
is invoked instead of the type conversion to
convert a value.

	prompt_suffix – a suffix that should be added to the prompt.

	show_default – shows or hides the default value in the prompt.

	
click.confirm(text, default=False, abort=False, prompt_suffix=': ', show_default=True)

	Prompts for confirmation (yes/no question).

If the user aborts the input by sending a interrupt signal this
function will catch it and raise a Abort exception.

	Parameters:	
	text – the question to ask.

	default – the default for the prompt.

	abort – if this is set to True a negative answer aborts the
exception by raising Abort.

	prompt_suffix – a suffix that should be added to the prompt.

	show_default – shows or hides the default value in the prompt.

	
click.progressbar(iterable=None, length=None, label=None, show_eta=True, show_percent=None, show_pos=False, item_show_func=None, fill_char='#', empty_char='-', bar_template='%(label)s [%(bar)s] %(info)s', info_sep=' ', width=36, file=None)

	This function creates an iterable context manager that can be used
to iterate over something while showing a progress bar. It will
either iterate over the iterable or length items (that are counted
up). While iteration happens, this function will print a rendered
progress bar to the given file (defaults to stdout) and will attempt
to calculate remaining time and more. By default, this progress bar
will not be rendered if the file is not a terminal.

The context manager creates the progress bar. When the context
manager is entered the progress bar is already displayed. With every
iteration over the progress bar, the iterable passed to the bar is
advanced and the bar is updated. When the context manager exits,
a newline is printed and the progress bar is finalized on screen.

No printing must happen or the progress bar will be unintentionally
destroyed.

Example usage:

with progressbar(items) as bar:
 for item in bar:
 do_something_with(item)

New in version 2.0.

	Parameters:	
	iterable – an iterable to iterate over. If not provided the length
is required.

	length – the number of items to iterate over. By default the
progressbar will attempt to ask the iterator about its
length, which might or might not work. If an iterable is
also provided this parameter can be used to override the
length. If an iterable is not provided the progress bar
will iterate over a range of that length.

	label – the label to show next to the progress bar.

	show_eta – enables or disables the estimated time display. This is
automatically disabled if the length cannot be
determined.

	show_percent – enables or disables the percentage display. The
default is True if the iterable has a length or
False if not.

	show_pos – enables or disables the absolute position display. The
default is False.

	item_show_func – a function called with the current item which
can return a string to show the current item
next to the progress bar. Note that the current
item can be None!

	fill_char – the character to use to show the filled part of the
progress bar.

	empty_char – the character to use to show the non-filled part of
the progress bar.

	bar_template – the format string to use as template for the bar.
The parameters in it are label for the label,
bar for the progress bar and info for the
info section.

	info_sep – the separator between multiple info items (eta etc.)

	width – the width of the progress bar in characters, 0 means full
terminal width

	file – the file to write to. If this is not a terminal then
only the label is printed.

	
click.clear()

	Clears the terminal screen. This will have the effect of clearing
the whole visible space of the terminal and moving the cursor to the
top left. This does not do anything if not connected to a terminal.

New in version 2.0.

	
click.style(text, fg=None, bg=None, bold=None, dim=None, underline=None, blink=None, reverse=None, reset=True)

	Styles a text with ANSI styles and returns the new string. By
default the styling is self contained which means that at the end
of the string a reset code is issued. This can be prevented by
passing reset=False.

Examples:

click.echo(click.style('Hello World!', fg='green'))
click.echo(click.style('ATTENTION!', blink=True))
click.echo(click.style('Some things', reverse=True, fg='cyan'))

Supported color names:

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	reset (reset the color code only)

New in version 2.0.

	Parameters:	
	text – the string to style with ansi codes.

	fg – if provided this will become the foreground color.

	bg – if provided this will become the background color.

	bold – if provided this will enable or disable bold mode.

	dim – if provided this will enable or disable dim mode. This is
badly supported.

	underline – if provided this will enable or disable underline.

	blink – if provided this will enable or disable blinking.

	reverse – if provided this will enable or disable inverse
rendering (foreground becomes background and the
other way round).

	reset – by default a reset-all code is added at the end of the
string which means that styles do not carry over. This
can be disabled to compose styles.

	
click.unstyle(text)

	Removes ANSI styling information from a string. Usually it’s not
necessary to use this function as click’s echo function will
automatically remove styling if necessary.

New in version 2.0.

	Parameters:	text – the text to remove style information from.

	
click.secho(text, file=None, nl=True, **styles)

	This function combines echo() and style() into one
call. As such the following two calls are the same:

click.secho('Hello World!', fg='green')
click.echo(click.style('Hello World!', fg='green'))

All keyword arguments are forwarded to the underlying functions
depending on which one they go with.

New in version 2.0.

	
click.edit(text=None, editor=None, env=None, require_save=True, extension='.txt', filename=None)

	Edits the given text in the defined editor. If an editor is given
(should be the full path to the executable but the regular operating
system search path is used for finding the executable) it overrides
the detected editor. Optionally, some environment variables can be
used. If the editor is closed without changes, None is returned. In
case a file is edited directly the return value is always None and
require_save and extension are ignored.

If the editor cannot be opened a UsageError is raised.

Note for Windows: to simplify cross-platform usage, the newlines are
automatically converted from POSIX to Windows and vice versa. As such,
the message here will have \n as newline markers.

	Parameters:	
	text – the text to edit.

	editor – optionally the editor to use. Defaults to automatic
detection.

	env – environment variables to forward to the editor.

	require_save – if this is true, then not saving in the editor
will make the return value become None.

	extension – the extension to tell the editor about. This defaults
to .txt but changing this might change syntax
highlighting.

	filename – if provided it will edit this file instead of the
provided text contents. It will not use a temporary
file as an indirection in that case.

	
click.launch(url, wait=False, locate=False)

	This function launches the given URL (or filename) in the default
viewer application for this file type. If this is an executable, it
might launch the executable in a new session. The return value is
the exit code of the launched application. Usually, 0 indicates
success.

Examples:

click.launch('http://click.pocoo.org/')
click.launch('/my/downloaded/file', locate=True)

New in version 2.0.

	Parameters:	
	url – URL or filename of the thing to launch.

	wait – waits for the program to stop.

	locate – if this is set to True then instead of launching the
application associated with the URL it will attempt to
launch a file manager with the file located. This
might have weird effects if the URL does not point to
the filesystem.

	
click.getchar(echo=False)

	Fetches a single character from the terminal and returns it. This
will always return a unicode character and under certain rare
circumstances this might return more than one character. The
situations which more than one character is returned is when for
whatever reason multiple characters end up in the terminal buffer or
standard input was not actually a terminal.

Note that this will always read from the terminal, even if something
is piped into the standard input.

New in version 2.0.

	Parameters:	echo – if set to True, the character read will also show up on
the terminal. The default is to not show it.

	
click.pause(info='Press any key to continue ...')

	This command stops execution and waits for the user to press any
key to continue. This is similar to the Windows batch “pause”
command. If the program is not run through a terminal, this command
will instead do nothing.

New in version 2.0.

	Parameters:	info – the info string to print before pausing.

	
click.get_terminal_size()

	Returns the current size of the terminal as tuple in the form
(width, height) in columns and rows.

	
click.get_binary_stream(name)

	Returns a system stream for byte processing. This essentially
returns the stream from the sys module with the given name but it
solves some compatibility issues between different Python versions.
Primarily this function is necessary for getting binary streams on
Python 3.

	Parameters:	name – the name of the stream to open. Valid names are 'stdin',
'stdout' and 'stderr'

	
click.get_text_stream(name, encoding=None, errors='strict')

	Returns a system stream for text processing. This usually returns
a wrapped stream around a binary stream returned from
get_binary_stream() but it also can take shortcuts on Python 3
for already correctly configured streams.

	Parameters:	
	name – the name of the stream to open. Valid names are 'stdin',
'stdout' and 'stderr'

	encoding – overrides the detected default encoding.

	errors – overrides the default error mode.

	
click.get_app_dir(app_name, roaming=True, force_posix=False)

	Returns the config folder for the application. The default behavior
is to return whatever is most appropriate for the operating system.

To give you an idea, for an app called "Foo Bar", something like
the following folders could be returned:

	Mac OS X:

	~/Library/Application Support/Foo Bar

	Mac OS X (POSIX):

	~/.foo-bar

	Unix:

	~/.config/foo-bar

	Unix (POSIX):

	~/.foo-bar

	Win XP (roaming):

	C:\Documents and Settings\<user>\Local Settings\Application Data\Foo Bar

	Win XP (not roaming):

	C:\Documents and Settings\<user>\Application Data\Foo Bar

	Win 7 (roaming):

	C:\Users\<user>\AppData\Roaming\Foo Bar

	Win 7 (not roaming):

	C:\Users\<user>\AppData\Local\Foo Bar

New in version 2.0.

	Parameters:	
	app_name – the application name. This should be properly capitalized
and can contain whitespace.

	roaming – controls if the folder should be roaming or not on Windows.
Has no affect otherwise.

	force_posix – if this is set to True then on any POSIX system the
folder will be stored in the home folder with a leading
dot instead of the XDG config home or darwin’s
application support folder.

	
click.format_filename(filename, shorten=False)

	Formats a filename for user display. The main purpose of this
function is to ensure that the filename can be displayed at all. This
will decode the filename to unicode if necessary in a way that it will
not fail. Optionally, it can shorten the filename to not include the
full path to the filename.

	Parameters:	
	filename – formats a filename for UI display. This will also convert
the filename into unicode without failing.

	shorten – this optionally shortens the filename to strip of the
path that leads up to it.

Commands

	
class click.BaseCommand(name, context_settings=None)

	The base command implements the minimal API contract of commands.
Most code will never use this as it does not implement a lot of useful
functionality but it can act as the direct subclass of alternative
parsing methods that do not depend on the click parser.

For instance, this can be used to bridge click and other systems like
argparse or docopt.

Because base commands do not implement a lot of the API that other
parts of click take for granted, they are not supported for all
operations. For instance, they cannot be used with the decorators
usually and they have no built-in callback system.

Changed in version 2.0: Added the context_settings parameter.

	Parameters:	
	name – the name of the command to use unless a group overrides it.

	context_settings – an optional dictionary with defaults that are
passed to the context object.

	
context_settings = None

	an optional dictionary with defaults passed to the context.

	
invoke(ctx)

	Given a context, this invokes the command. The default
implementation is raising a not implemented error.

	
main(args=None, prog_name=None, complete_var=None, **extra)

	This is the way to invoke a script with all the bells and
whistles as a command line application. This will always terminate
the application after a call. If this is not wanted, SystemExit
needs to be caught.

This method is also available by directly calling the instance of
a Command.

	Parameters:	
	args – the arguments that should be used for parsing. If not
provided, sys.argv[1:] is used.

	prog_name – the program name that should be used. By default
the program name is constructed by taking the file
name from sys.argv[0].

	complete_var – the environment variable that controls the
bash completion support. The default is
"_<prog_name>_COMPLETE" with prog name in
uppercase.

	extra – extra keyword arguments are forwarded to the context
constructor. See Context for more information.

	
make_context(info_name, args, parent=None, **extra)

	This function when given an info name and arguments will kick
off the parsing and create a new Context. It does not
invoke the actual command callback though.

	Parameters:	
	info_name – the info name for this invokation. Generally this
is the most descriptive name for the script or
command. For the toplevel script it’s usually
the name of the script, for commands below it it’s
the name of the script.

	args – the arguments to parse as list of strings.

	parent – the parent context if available.

	extra – extra keyword arguments forwarded to the context
constructor.

	
name = None

	the name the command thinks it has. Upon registering a command
on a Group the group will default the command name
with this information. You should instead use the
Context‘s info_name attribute.

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
class click.Command(name, context_settings=None, callback=None, params=None, help=None, epilog=None, short_help=None, options_metavar='[OPTIONS]', add_help_option=True)

	Commands are the basic building block of command line interfaces in
click. A basic command handles command line parsing and might dispatch
more parsing to commands nested below it.

Changed in version 2.0: Added the context_settings parameter.

	Parameters:	
	name – the name of the command to use unless a group overrides it.

	context_settings – an optional dictionary with defaults that are
passed to the context object.

	callback – the callback to invoke. This is optional.

	params – the parameters to register with this command. This can
be either Option or Argument objects.

	help – the help string to use for this command.

	epilog – like the help string but it’s printed at the end of the
help page after everything else.

	short_help – the short help to use for this command. This is
shown on the command listing of the parent command.

	add_help_option – by default each command registers a --help
option. This can be disabled by this parameter.

	
callback = None

	the callback to execute when the command fires. This might be
None in which case nothing happens.

	
collect_usage_pieces(ctx)

	Returns all the pieces that go into the usage line and returns
it as a list of strings.

	
format_epilog(ctx, formatter)

	Writes the epilog into the formatter if it exists.

	
format_help(ctx, formatter)

	Writes the help into the formatter if it exists.

This calls into the following methods:

	format_usage()

	format_help_text()

	format_options()

	format_epilog()

	
format_help_text(ctx, formatter)

	Writes the help text to the formatter if it exists.

	
format_options(ctx, formatter)

	Writes all the options into the formatter if they exist.

	
format_usage(ctx, formatter)

	Writes the usage line into the formatter.

	
get_help(ctx)

	Formats the help into a string and returns it. This creates a
formatter and will call into the following formatting methods:

	
get_help_option(ctx)

	Returns the help option object.

	
get_help_option_names(ctx)

	Returns the names for the help option.

	
invoke(ctx)

	Given a context, this invokes the attached callback (if it exists)
in the right way.

	
make_parser(ctx)

	Creates the underlying option parser for this command.

	
params = None

	the list of parameters for this command in the order they
should show up in the help page and execute. Eager parameters
will automatically be handled before non eager ones.

	
class click.MultiCommand(name=None, invoke_without_command=False, no_args_is_help=None, subcommand_metavar='COMMAND [ARGS]...', **attrs)

	A multi command is the basic implementation of a command that
dispatches to subcommands. The most common version is the
Command.

	Parameters:	
	invoke_without_command – this controls how the multi command itself
is invoked. By default it’s only invoked
if a subcommand is provided.

	no_args_is_help – this controls what happens if no arguments are
provided. This option is enabled by default if
invoke_without_command is disabled or disabled
if it’s enabled. If enabled this will add
--help as argument if no arguments are
passed.

	subcommand_metavar – the string that is used in the documentation
to indicate the subcommand place.

	
format_commands(ctx, formatter)

	Extra format methods for multi methods that adds all the commands
after the options.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
list_commands(ctx)

	Returns a list of subcommand names in the order they should
appear.

	
class click.Group(name=None, commands=None, **attrs)

	A group allows a command to have subcommands attached. This is the
most common way to implement nesting in click.

	Parameters:	commands – a dictionary of commands.

	
add_command(cmd, name=None)

	Registers another Command with this group. If the name
is not provided, the name of the command is used.

	
command(*args, **kwargs)

	A shortcut decorator for declaring and attaching a command to
the group. This takes the same arguments as command() but
immediately registers the created command with this instance by
calling into add_command().

	
commands = None

	the registered subcommands by their exported names.

	
group(*args, **kwargs)

	A shortcut decorator for declaring and attaching a group to
the group. This takes the same arguments as group() but
immediately registers the created command with this instance by
calling into add_command().

	
class click.CommandCollection(name=None, sources=None, **attrs)

	A command collection is a multi command that merges multiple multi
commands together into one. This is a straightforward implementation
that accepts a list of different multi commands as sources and
provides all the commands for each of them.

	
add_source(multi_cmd)

	Adds a new multi command to the chain dispatcher.

	
sources = None

	The list of registered multi commands.

Parameters

	
class click.Parameter(param_decls=None, type=None, required=False, default=None, callback=None, nargs=1, metavar=None, expose_value=True, is_eager=False, envvar=None)

	A parameter to a command comes in two versions: they are either
Options or Arguments. Other subclasses are currently
not supported by design as some of the internals for parsing are
intentionally not finalized.

Some settings are supported by both options and arguments.

Changed in version 2.0: Changed signature for parameter callback to also be passed the
parameter. In click 2.0, the old callback format will still work,
but it will raise a warning to give you change to migrate the
code easier.

	Parameters:	
	param_decls – the parameter declarations for this option or
argument. This is a list of flags or argument
names.

	type – the type that should be used. Either a ParamType
or a Python type. The later is converted into the former
automatically if supported.

	required – controls if this is optional or not.

	default – the default value if omitted. This can also be a callable,
in which case it’s invoked when the default is needed
without any arguments.

	callback – a callback that should be executed after the parameter
was matched. This is called as fn(ctx, param,
value) and needs to return the value. Before click
2.0, the signature was (ctx, value).

	nargs – the number of arguments to match. If not 1 the return
value is a tuple instead of single value.

	metavar – how the value is represented in the help page.

	expose_value – if this is True then the value is passed onwards
to the command callback and stored on the context,
otherwise it’s skipped.

	is_eager – eager values are processed before non eager ones. This
should not be set for arguments or it will inverse the
order of processing.

	envvar – a string or list of strings that are environment variables
that should be checked.

	
get_default(ctx)

	Given a context variable this calculates the default value.

	
process_value(ctx, value)

	Given a value and context this runs the logic to convert the
value as necessary.

	
class click.Option(param_decls=None, show_default=False, prompt=False, confirmation_prompt=False, hide_input=False, is_flag=None, flag_value=None, multiple=False, count=False, allow_from_autoenv=True, type=None, help=None, **attrs)

	Options are usually optional values on the command line and
have some extra features that arguments don’t have.

All other parameters are passed onwards to the parameter constructor.

	Parameters:	
	show_default – controls if the default value should be shown on the
help page. Normally, defaults are not shown.

	prompt – if set to True or a non empty string then the user will
be prompted for input if not set. If set to True the
prompt will be the option name capitalized.

	confirmation_prompt – if set then the value will need to be confirmed
if it was prompted for.

	hide_input – if this is True then the input on the prompt will be
hidden from the user. This is useful for password
input.

	is_flag – forces this option to act as a flag. The default is
auto detection.

	flag_value – which value should be used for this flag if it’s
enabled. This is set to a boolean automatically if
the option string contains a slash to mark two options.

	multiple – if this is set to True then the argument is accepted
multiple times and recorded. This is similar to nargs
in how it works but supports arbitrary number of
arguments.

	count – this flag makes an option increment an integer.

	allow_from_autoenv – if this is enabled then the value of this
parameter will be pulled from an environment
variable in case a prefix is defined on the
context.

	help – the help string.

	
class click.Argument(param_decls, required=None, **attrs)

	Arguments are positional parameters to a command. They generally
provide fewer features than options but can have infinite nargs
and are required by default.

All parameters are passed onwards to the parameter constructor.

Context

	
class click.Context(command, parent=None, info_name=None, obj=None, auto_envvar_prefix=None, default_map=None, terminal_width=None, resilient_parsing=False, help_option_names=None, token_normalize_func=None)

	The context is a special internal object that holds state relevant
for the script execution at every single level. It’s normally invisible
to commands unless they opt-in to getting access to it.

The context is useful as it can pass internal objects around and can
control special execution features such as reading data from
environment variables.

A context can be used as context manager in which case it will call
close() on teardown.

New in version 2.0: Added the resilient_parsing, help_option_names,
token_normalize_func parameters.

	Parameters:	
	command – the command class for this context.

	parent – the parent context.

	info_name – the info name for this invokation. Generally this
is the most descriptive name for the script or
command. For the toplevel script is is usually
the name of the script, for commands below it it’s
the name of the script.

	obj – an arbitrary object of user data.

	auto_envvar_prefix – the prefix to use for automatic environment
variables. If this is None then reading
from environment variables is disabled. This
does not affect manually set environment
variables which are always read.

	default_map – a dictionary (like object) with default values
for parameters.

	terminal_width – the width of the terminal. The default is
inherit from parent context. If no context
defines the terminal width then auto
detection will be applied.

	resilient_parsing – if this flag is enabled then click will
parse without any interactivity or callback
invocation. This is useful for implementing
things such as completion support.

	help_option_names – optionally a list of strings that define how
the default help parameter is named. The
default is ['--help'].

	token_normalize_func – an optional function that is used to
normalize tokens (options, choices,
etc.). This for instance can be used to
implement case insensitive behavior.

	
abort()

	Aborts the script.

	
args = None

	the leftover arguments.

	
call_on_close(f)

	This decorator remembers a function as callback that should be
executed when the context tears down. This is most useful to bind
resource handling to the script execution. For instance, file objects
opened by the File type will register their close callbacks
here.

	Parameters:	f – the function to execute on teardown.

	
close()

	Invokes all close callbacks.

	
command = None

	the Command for this context.

	
command_path

	The computed command path. This is used for the usage
information on the help page. It’s automatically created by
combining the info names of the chain of contexts to the root.

	
ensure_object(object_type)

	Like find_object() but sets the innermost object to a
new instance of object_type if it does not exist.

	
exit(code=0)

	Exits the application with a given exit code.

	
fail(message)

	Aborts the execution of the program with a specific error
message.

	Parameters:	message – the error message to fail with.

	
find_object(object_type)

	Finds the closest object of a given type.

	
find_root()

	Finds the outermost context.

	
forward(*args, **kwargs)

	Similar to forward() but fills in default keyword
arguments from the current context if the other command expects
it. This cannot invoke callbacks directly, only other commands.

	
get_help()

	Helper method to get formatted help page for the current
context and command.

	
get_usage()

	Helper method to get formatted usage string for the current
context and command.

	
help_option_names = None

	The names for the help options.

	
info_name = None

	the descriptive information name

	
invoke(*args, **kwargs)

	Invokes a command callback in exactly the way it expects.

	
invoked_subcommand = None

	this flag indicates if a subcommand is going to be executed.
a group callback can use this information to figure out if it’s
being executed directly or because the execution flow passes
onwards to a subcommand. By default it’s None, but it can be
the name of the subcommand to execute.

	
lookup_default(name)

	Looks up the default for a parameter name. This by default
looks into the default_map if available.

	
make_formatter()

	Creates the formatter for the help and usage output.

	
obj = None

	the user object stored.

	
params = None

	the parsed parameters except if the value is hidden in which
case it’s not remembered.

	
parent = None

	the parent context or None if none exists.

	
resilient_parsing = None

	Indicates if resilient parsing is enabled. In that case click
will do its best to not cause any failures.

	
terminal_width = None

	The width of the terminal (None is autodetection).

	
token_normalize_func = None

	An optional normalization function for tokens. This is
options, choices, commands etc.

Types

	
click.STRING = STRING

	A unicode string parameter type which is the implicit default. This
can also be selected by using str as type.

	
click.INT = INT

	An integer parameter. This can also be selected by using int as
type.

	
click.FLOAT = FLOAT

	A floating point value parameter. This can also be selected by using
float as type.

	
click.BOOL = BOOL

	A boolean parameter. This is the default for boolean flags. This can
also be selected by using bool as a type.

	
click.UUID = UUID

	A UUID parameter.

	
class click.File(mode='r', encoding=None, errors='strict', lazy=None, atomic=False)

	Declares a parameter to be a file for reading or writing. The file
is automatically closed once the context tears down (after the command
finished working).

Files can be opened for reading or writing. The special value -
indicates stdin or stdout depending on the mode.

By default, the file is opened for reading text data, but it can also be
opened in binary mode or for writing. The encoding parameter can be used
to force a specific encoding.

The lazy flag controls if the file should be opened immediately or
upon first IO. The default is to be non lazy for standard input and
output streams as well as files opened for reading, lazy otherwise.

Starting with click 2.0, files can also be opened atomically in which
case all writes go into a separate file in the same folder and upon
completion the file will be moved over to the original location. This
is useful if a file regularly read by other users is modified.

See File Arguments for more information.

	
class click.Path(exists=False, file_okay=True, dir_okay=True, writable=False, readable=True, resolve_path=False)

	The path type is similar to the File type but it performs
different checks. First of all, instead of returning a open file
handle it returns just the filename. Secondly, it can perform various
basic checks about what the file or directory should be.

	Parameters:	
	exists – if set to true, the file or directory needs to exist for
this value to be valid. If this is not required and a
file does indeed not exist, then all further checks are
silently skipped.

	file_okay – controls if a file is a possible value.

	dir_okay – controls if a directory is a possible value.

	writable – if true, a writable check is performed.

	readable – if true, a readable check is performed.

	resolve_path – if this is true, then the path is fully resolved
before the value is passed onwards. This means
that it’s absolute and symlinks are resolved.

	
class click.Choice(choices)

	The choice type allows a value to checked against a fixed set of
supported values. All of these values have to be integers.

See Choice Options for an example.

	
class click.IntRange(min=None, max=None, clamp=False)

	A parameter that works similar to click.INT but restricts
the value to fit into a range. The default behavior is to fail if the
value falls outside the range, but it can also be silently clamped
between the two edges.

See Range Options for an example.

	
class click.ParamType

	Helper for converting values through types. The following is
necessary for a valid type:

	it needs a name

	it needs to pass through None unchanged

	it needs to convert from a string

	it needs to convert its result type through unchanged
(eg: needs to be idempotent)

	it needs to be able to deal with param and context being None.
This can be the case when the object is used with prompt
inputs.

	
convert(param, ctx, value)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
envvar_list_splitter = None

	if a list of this type is expected and the value is pulled from a
string environment variable, this is what splits it up. None
means any whitespace. For all parameters the general rule is that
whitespace splits them up. The exception are paths and files which
are split by os.path.pathsep by default (”:” on Unix and ”;” on
Windows).

	
fail(message, param=None, ctx=None)

	Helper method to fail with an invalid value message.

	
get_metavar(param)

	Returns the metavar default for this param if it provides one.

	
get_missing_message(param)

	Optionally might return extra information about a missing
parameter.

New in version 2.0.

	
name = None

	the descriptive name of this type

	
split_envvar_value(rv)

	Given a value from an environment variable this splits it up
into small chunks depending on the defined envvar list splitter.

If the splitter is set to None, which means that whitespace splits,
then leading and trailing whitespace is ignored. Otherwise, leading
and trailing splitters usually lead to empty items being included.

Exceptions

	
exception click.ClickException(message)

	An exception that click can handle and show to the user.

	
exception click.Abort

	An internal signalling exception that signals click to abort.

	
exception click.UsageError(message, ctx=None)

	An internal exception that signals a usage error. This typically
aborts any further handling.

	Parameters:	
	message – the error message to display.

	ctx – optionally the context that caused this error. Click will
fill in the context automatically in some situations.

	
exception click.BadParameter(message, ctx=None, param=None, param_hint=None)

	An exception that formats out a standardized error message for a
bad parameter. This is useful when thrown from a callback or type as
click will attach contextual information to it (for instance, which
parameter it is).

New in version 2.0.

	Parameters:	
	param – the parameter object that caused this error. This can
be left out, and click will attach this info itself
if possible.

	param_hint – a string that shows up as parameter name. This
can be used as alternative to param in cases
where custom validation should happen. If it is
a string it’s used as such, if it’s a list then
each item is quoted and separated.

	
exception click.FileError(filename, hint=None)

	Raised if a file cannot be opened.

Formatting

	
class click.HelpFormatter(indent_increment=2, width=None)

	This class helps with formatting text-based help pages. It’s
usually just needed for very special internal cases, but it’s also
exposed so that developers can write their own fancy outputs.

At present, it always writes into memory.

	Parameters:	
	indent_increment – the additional increment for each level.

	width – the width for the text. This defaults to the terminal
width clamped to a maximum of 78.

	
dedent()

	Decreases the indentation.

	
getvalue()

	Returns the buffer contents.

	
indent()

	Increases the indentation.

	
indentation(*args, **kwds)

	A context manager that increases the indentation.

	
section(*args, **kwds)

	Helpful context manager that writes a paragraph, a heading,
and the indents.

	Parameters:	name – the section name that is written as heading.

	
write(string)

	Writes a unicode string into the internal buffer.

	
write_dl(rows, col_max=30, col_spacing=2)

	Writes a definition list into the buffer. This is how options
and commands are usually formatted.

	Parameters:	
	rows – a list of two item tuples for the terms and values.

	col_max – the maximum width of the first column.

	col_spacing – the number of spaces between the first and
second column.

	
write_heading(heading)

	Writes a heading into the buffer.

	
write_paragraph()

	Writes a paragraph into the buffer.

	
write_text(text)

	Writes re-indented text into the buffer. This rewraps and
preserves paragraphs.

	
write_usage(prog, args='', prefix='Usage: ')

	Writes a usage line into the buffer.

	Parameters:	
	prog – the program name.

	args – whitespace separated list of arguments.

	prefix – the prefix for the first line.

	
click.wrap_text(text, width=78, initial_indent='', subsequent_indent='', preserve_paragraphs=False)

	A helper function that intelligently wraps text. By default, it
assumes that it operates on a single paragraph of text but if the
preserve_paragraphs parameter is provided it will intelligently
handle paragraphs (defined by two empty lines).

If paragraphs are handled, a paragraph can be prefixed with an empty
line containing the \b character (\x08) to indicate that
no rewrapping should happen in that block.

	Parameters:	
	text – the text that should be rewrapped.

	width – the maximum width for the text.

	initial_indent – the initial indent that should be placed on the
first line as a string.

	subsequent_indent – the indent string that should be placed on
each consecutive line.

	preserve_paragraphs – if this flag is set then the wrapping will
intelligently handle paragraphs.

Parsing

	
class click.OptionParser(ctx=None)

	The option parser is an internal class that is ultimately used to
parse options and arguments. It’s modelled after optparse and brings
a similar but vastly simplified API. It should generally not be used
directly as the high level click classes wrap it for you.

It’s not nearly as extensible as optparse or argparse as it does not
implement features that are implemented on a higher level (such as
types or defaults).

	Parameters:	ctx – optionally the Context where this parser
should go with.

	
add_argument(dest, nargs=1, obj=None)

	Adds a positional argument named dest to the parser.

The obj can be used to identify the option in the order list
that is returned from the parser.

	
add_option(opts, dest, action=None, nargs=1, const=None, obj=None)

	Adds a new option named dest to the parser. The destination
is not inferred (unlike with optparse) and needs to be explicitly
provided. Action can be any of store, store_const,
append, appnd_const or count.

The obj can be used to identify the option in the order list
that is returned from the parser.

	
allow_interspersed_args = None

	This controls how the parser deals with interspersed arguments.
If this is set to False, the parser will stop on the first
non-option. Click uses this to implement nested subcommands
safely.

	
ctx = None

	The Context for this parser. This might be
None for some advanced use cases.

	
parse_args(args)

	Parses positional arguments and returns (values, args, order)
for the parsed options and arguments as well as the leftover
arguments if there are any. The order is a list of objects as they
appear on the command line. If arguments appear multiple times they
will be memorized multiple times as well.

Testing

	
class click.testing.CliRunner(charset=None, env=None, echo_stdin=False)

	The CLI runner provides functionality to invoke a click command line
script for unittesting purposes in a isolated environment. This only
works in single-threaded systems without any concurrency as it changes the
global interpreter state.

	Parameters:	
	charset – the character set for the input and output data. This is
UTF-8 by default and should not be changed currently as
the reporting to click only works in Python 2 properly.

	env – a dictionary with environment variables for overriding.

	echo_stdin – if this is set to True, then reading from stdin writes
to stdout. This is useful for showing examples in
some circumstances. Note that regular prompts
will automatically echo the input.

	
get_default_prog_name(cli)

	Given a command object it will return the default program name
for it. The default is the name attribute or "root" if not
set.

	
invoke(cli, args=None, input=None, env=None, **extra)

	Invokes a command in an isolated environment. The arguments are
forwarded directly to the command line script, the extra keyword
arguments are passed to the main() function of
the command.

This returns a Result object.

	Parameters:	
	cli – the command to invoke

	args – the arguments to invoke

	input – the input data for sys.stdin.

	env – the environment overrides.

	extra – the keyword arguments to pass to main().

	
isolated_filesystem(*args, **kwds)

	A context manager that creates a temporary folder and changes
the current working directory to it for isolated filesystem tests.

	
isolation(*args, **kwds)

	A context manager that sets up the isolation for invoking of a
command line tool. This sets up stdin with the given input data
and os.environ with the overrides from the given dictionary.
This also rebinds some internals in click to be mocked (like the
prompt functionality).

This is automatically done in the invoke() method.

	Parameters:	
	input – the input stream to put into sys.stdin.

	env – the environment overrides as dictionary.

	
make_env(overrides=None)

	Returns the environment overrides for invoking a script.

	
class click.testing.Result(runner, output_bytes, exit_code, exception)

	Holds the captured result of an invoked CLI script.

	
exception = None

	The exception that happend if one did.

	
exit_code = None

	The exit code as integer.

	
output

	The output as unicode string.

	
output_bytes = None

	The output as bytes.

	
runner = None

	The runner that created the result

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Click Changelog

This contains all major version changes between click releases.

Version 2.4

(bugfix release, released on July 4th 2014)

	Corrected a bug in the change of the help option in 2.3.

Version 2.3

(bugfix release, released on July 3rd 2014)

	Fixed an incorrectly formatted help record for count options.’

	Add support for ansi code stripping on Windows if colorama
is not available.

	restored the Click 1.0 handling of the help parameter for certain
edge cases.

Version 2.2

(bugfix release, released on June 26th 2014)

	fixed tty detection on PyPy.

	fixed an issue that progress bars were not rendered when the
context manager was entered.

Version 2.1

(bugfix release, released on June 14th 2014)

	fixed the launch() function on windows.

	improved the colorama support on windows to try hard to not
screw up the console if the application is interrupted.

	fixed windows terminals incorrectly being reported to be 80
characters wide instead of 79

	use colorama win32 bindings if available to get the correct
dimensions of a windows terminal.

	fixed an issue with custom function types on Python 3.

	fixed an issue with unknown options being incorrectly reported
in error messages.

Version 2.0

(codename “tap tap tap”, released on June 6th 2014)

	added support for opening stdin/stdout on Windows in
binary mode correctly.

	added support for atomic writes to files by going through
a temporary file.

	introduced BadParameter which can be used to easily perform
custom validation with the same error messages as in the type system.

	added progressbar(); a function to show progress bars.

	added get_app_dir(); a function to calculate the home folder
for configs.

	Added transparent handling for ANSI codes into the echo()
function through colorama.

	Added clear() function.

	Breaking change: parameter callbacks now get the parameter object
passed as second argument. There is legacy support for old callbacks
which will warn but still execute the script.

	Added style(), unstyle() and secho() for ANSI
styles.

	Added an edit() function that invokes the default editor.

	Added an launch() function that launches browsers and applications.

	nargs of -1 for arguments can now be forced to be a single item through
the required flag. It defaults to not required.

	setting a default for arguments now implicitly makes it non required.

	changed “yN” / “Yn” to “y/N” and “Y/n” in confirmation prompts.

	added basic support for bash completion.

	added getchar() to fetch a single character from the terminal.

	errors now go to stderr as intended.

	fixed various issues with more exotic parameter formats like DOS/Windows
style arguments.

	added pause() which works similar to the Windows pause cmd
built-in but becomes an automatic noop if the application is not run
through a terminal.

	added a bit of extra information about missing choice parameters.

	changed how the help function is implemented to allow global overriding
of the help option.

	added support for token normalization to implement case insensitive handling.

	added support for providing defaults for context settings.

Version 1.1

(bugfix release, released on May 23rd 2014)

	fixed a bug that caused text files in Python 2 to not accept
native strings.

Version 1.0

(no codename, released on May 21st 2014)

	Initial release.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	click

Upgrading To Newer Releases

Click attempts the highest level of backwards compatibility but sometimes
this is not entirely possible. In case we need to break backwards
compatibility this document gives you information about how to upgrade or
handle backwards compatibility properly.

Upgrading to 2.0

Click 2.0 has one breaking change which is the signature for parameter
callbacks. Before 2.0, the callback was invoked with (ctx, value)
whereas now it’s (ctx, param, value). This change was necessary as it
otherwise made reusing callbacks too complicated.

To ease the transition click will still accept old callbacks. Starting
with click 3.0 it will start to issue a warning to stderr to encourage you
to upgrade.

In case you want to support both click 1.0 and click 2.0, you can make a
simple decorator that adjusts the signatures:

import click
from functools import update_wrapper

def compatcallback(f):
 # Click 1.0 does not have a version string stored, so we need to
 # use getattr here to be safe.
 if getattr(click, '__version__', '0.0') >= '2.0':
 return f
 return update_wrapper(lambda ctx, value: f(ctx, None, value), f)

With that helper you can then write something like this:

@compatcallback
def callback(ctx, param, value):
 return value.upper()

Note that because click 1.0 did not pass a parameter, the param argument
here would be None, so a compatibility callback could not use that
argument.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	click

License

Click is licensed under a three-clause BSD License. It basically means:
do whatever you want with it as long as the copyright in click sticks
around, the conditions are not modified and the disclaimer is present.
Furthermore, you must not use the names of the authors to promote derivatives
of the software without written consent.

License Text

Copyright (c) 2014 by Armin Ronacher.

Click uses parts of optparse written by Gregory P. Ward and maintained by the
Python software foundation. This is limited to code in the parser.py
module:

Copyright (c) 2001-2006 Gregory P. Ward. All rights reserved.
Copyright (c) 2002-2006 Python Software Foundation. All rights reserved.

Some rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	click

 Python Module Index

 c

 			

 		
 c	

 	
 	
 click	

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	click

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	Abort

 	abort() (click.Context method)

 	add_argument() (click.OptionParser method)

 	add_command() (click.Group method)

 	add_option() (click.OptionParser method)

 	

 	add_source() (click.CommandCollection method)

 	allow_interspersed_args (click.OptionParser attribute)

 	args (click.Context attribute)

 	Argument (class in click)

 	argument() (in module click)

B

 	

 	BadParameter

 	BaseCommand (class in click)

 	

 	BOOL (in module click)

C

 	

 	call_on_close() (click.Context method)

 	callback (click.Command attribute)

 	Choice (class in click)

 	clear() (in module click)

 	click (module)

 	ClickException

 	CliRunner (class in click.testing)

 	close() (click.Context method)

 	collect_usage_pieces() (click.Command method)

 	Command (class in click)

 	command (click.Context attribute)

 	

 	command() (click.Group method)

 	

 	(in module click)

 	command_path (click.Context attribute)

 	CommandCollection (class in click)

 	commands (click.Group attribute)

 	confirm() (in module click)

 	confirmation_option() (in module click)

 	Context (class in click)

 	context_settings (click.BaseCommand attribute)

 	convert() (click.ParamType method)

 	ctx (click.OptionParser attribute)

D

 	

 	dedent() (click.HelpFormatter method)

E

 	

 	echo() (in module click)

 	echo_via_pager() (in module click)

 	edit() (in module click)

 	ensure_object() (click.Context method)

 	

 	envvar_list_splitter (click.ParamType attribute)

 	exception (click.testing.Result attribute)

 	exit() (click.Context method)

 	exit_code (click.testing.Result attribute)

F

 	

 	fail() (click.Context method)

 	

 	(click.ParamType method)

 	File (class in click)

 	FileError

 	find_object() (click.Context method)

 	find_root() (click.Context method)

 	FLOAT (in module click)

 	format_commands() (click.MultiCommand method)

 	

 	format_epilog() (click.Command method)

 	format_filename() (in module click)

 	format_help() (click.Command method)

 	format_help_text() (click.Command method)

 	format_options() (click.Command method)

 	format_usage() (click.Command method)

 	forward() (click.Context method)

G

 	

 	get_app_dir() (in module click)

 	get_binary_stream() (in module click)

 	get_command() (click.MultiCommand method)

 	get_default() (click.Parameter method)

 	get_default_prog_name() (click.testing.CliRunner method)

 	get_help() (click.Command method)

 	

 	(click.Context method)

 	get_help_option() (click.Command method)

 	get_help_option_names() (click.Command method)

 	get_metavar() (click.ParamType method)

 	

 	get_missing_message() (click.ParamType method)

 	get_terminal_size() (in module click)

 	get_text_stream() (in module click)

 	get_usage() (click.Context method)

 	getchar() (in module click)

 	getvalue() (click.HelpFormatter method)

 	Group (class in click)

 	group() (click.Group method)

 	

 	(in module click)

H

 	

 	help_option() (in module click)

 	help_option_names (click.Context attribute)

 	

 	HelpFormatter (class in click)

I

 	

 	indent() (click.HelpFormatter method)

 	indentation() (click.HelpFormatter method)

 	info_name (click.Context attribute)

 	INT (in module click)

 	IntRange (class in click)

 	

 	invoke() (click.BaseCommand method)

 	

 	(click.Command method)

 	(click.Context method)

 	(click.testing.CliRunner method)

 	invoked_subcommand (click.Context attribute)

 	isolated_filesystem() (click.testing.CliRunner method)

 	isolation() (click.testing.CliRunner method)

L

 	

 	launch() (in module click)

 	list_commands() (click.MultiCommand method)

 	

 	lookup_default() (click.Context method)

M

 	

 	main() (click.BaseCommand method)

 	make_context() (click.BaseCommand method)

 	make_env() (click.testing.CliRunner method)

 	make_formatter() (click.Context method)

 	

 	make_parser() (click.Command method)

 	make_pass_decorator() (in module click)

 	MultiCommand (class in click)

N

 	

 	name (click.BaseCommand attribute)

 	

 	(click.ParamType attribute)

O

 	

 	obj (click.Context attribute)

 	Option (class in click)

 	option() (in module click)

 	

 	OptionParser (class in click)

 	output (click.testing.Result attribute)

 	output_bytes (click.testing.Result attribute)

P

 	

 	Parameter (class in click)

 	params (click.Command attribute)

 	

 	(click.Context attribute)

 	ParamType (class in click)

 	parent (click.Context attribute)

 	parse_args() (click.BaseCommand method)

 	

 	(click.OptionParser method)

 	pass_context() (in module click)

 	pass_obj() (in module click)

 	

 	password_option() (in module click)

 	Path (class in click)

 	pause() (in module click)

 	process_value() (click.Parameter method)

 	progressbar() (in module click)

 	prompt() (in module click)

R

 	

 	resilient_parsing (click.Context attribute)

 	Result (class in click.testing)

 	

 	runner (click.testing.Result attribute)

S

 	

 	secho() (in module click)

 	section() (click.HelpFormatter method)

 	sources (click.CommandCollection attribute)

 	

 	split_envvar_value() (click.ParamType method)

 	STRING (in module click)

 	style() (in module click)

T

 	

 	terminal_width (click.Context attribute)

 	

 	token_normalize_func (click.Context attribute)

U

 	

 	unstyle() (in module click)

 	UsageError

 	

 	UUID (in module click)

V

 	

 	version_option() (in module click)

W

 	

 	wrap_text() (in module click)

 	write() (click.HelpFormatter method)

 	write_dl() (click.HelpFormatter method)

 	write_heading() (click.HelpFormatter method)

 	

 	write_paragraph() (click.HelpFormatter method)

 	write_text() (click.HelpFormatter method)

 	write_usage() (click.HelpFormatter method)

 Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/click.png
S click _
[

_static/down.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		click »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Armin Ronacher.
 Created using Sphinx 1.2.2.

_static/click@2x.png
S click _

[

_static/ajax-loader.gif

_static/click-small.png
> click

_static/minus.png

_static/comment.png

_static/click-small@2x.png
S click _

N

